如何使用OpenCV-Python实现识别答题卡判卷功能
发表于:2025-01-18 作者:千家信息网编辑
千家信息网最后更新 2025年01月18日,这篇文章主要为大家展示了"如何使用OpenCV-Python实现识别答题卡判卷功能",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"如何使用OpenCV-Py
千家信息网最后更新 2025年01月18日如何使用OpenCV-Python实现识别答题卡判卷功能
这篇文章主要为大家展示了"如何使用OpenCV-Python实现识别答题卡判卷功能",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"如何使用OpenCV-Python实现识别答题卡判卷功能"这篇文章吧。
任务
识别用相机拍下来的答题卡,并判断最终得分(假设正确答案是B, E, A, D, B)
主要步骤
轮廓识别--答题卡边缘识别
透视变换--提取答题卡主体
轮廓识别--识别出所有圆形选项,剔除无关轮廓
检测每一行选择的是哪一项,并将结果储存起来,记录正确的个数
计算最终得分并在图中标注
分步实现
轮廓识别--答题卡边缘识别
输入图像
import cv2 as cvimport numpy as np # 正确答案right_key = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1} # 输入图像img = cv.imread('./images/test_01.jpg')img_copy = img.copy()img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)cvshow('img-gray', img_gray)
图像预处理
# 图像预处理# 高斯降噪img_gaussian = cv.GaussianBlur(img_gray, (5, 5), 1)cvshow('gaussianblur', img_gaussian)# canny边缘检测img_canny = cv.Canny(img_gaussian, 80, 150)cvshow('canny', img_canny)
轮廓识别--答题卡边缘识别
# 轮廓识别--答题卡边缘识别cnts, hierarchy = cv.findContours(img_canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)cv.drawContours(img_copy, cnts, -1, (0, 0, 255), 3)cvshow('contours-show', img_copy)
透视变换--提取答题卡主体
对每个轮廓进行拟合,将多边形轮廓变为四边形
docCnt = None # 确保检测到了if len(cnts) > 0: # 根据轮廓大小进行排序 cnts = sorted(cnts, key=cv.contourArea, reverse=True) # 遍历每一个轮廓 for c in cnts: # 近似 peri = cv.arcLength(c, True) # arclength 计算一段曲线的长度或者闭合曲线的周长; # 第一个参数输入一个二维向量,第二个参数表示计算曲线是否闭合 approx = cv.approxPolyDP(c, 0.02 * peri, True) # 用一条顶点较少的曲线/多边形来近似曲线/多边形,以使它们之间的距离<=指定的精度; # c是需要近似的曲线,0.02*peri是精度的最大值,True表示曲线是闭合的 # 准备做透视变换 if len(approx) == 4: docCnt = approx break
透视变换--提取答题卡主体
# 透视变换--提取答题卡主体docCnt = docCnt.reshape(4, 2)warped = four_point_transform(img_gray, docCnt)cvshow('warped', warped)
def four_point_transform(img, four_points): rect = order_points(four_points) (tl, tr, br, bl) = rect # 计算输入的w和h的值 widthA = np.sqrt((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2) widthB = np.sqrt((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2) heightB = np.sqrt((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2) maxHeight = max(int(heightA), int(heightB)) # 变换后对应的坐标位置 dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype='float32') # 最主要的函数就是 cv2.getPerspectiveTransform(rect, dst) 和 cv2.warpPerspective(image, M, (maxWidth, maxHeight)) M = cv.getPerspectiveTransform(rect, dst) warped = cv.warpPerspective(img, M, (maxWidth, maxHeight)) return warped def order_points(points): res = np.zeros((4, 2), dtype='float32') # 按照从前往后0,1,2,3分别表示左上、右上、右下、左下的顺序将points中的数填入res中 # 将四个坐标x与y相加,和最大的那个是右下角的坐标,最小的那个是左上角的坐标 sum_hang = points.sum(axis=1) res[0] = points[np.argmin(sum_hang)] res[2] = points[np.argmax(sum_hang)] # 计算坐标x与y的离散插值np.diff() diff = np.diff(points, axis=1) res[1] = points[np.argmin(diff)] res[3] = points[np.argmax(diff)] # 返回result return res
轮廓识别--识别出选项
# 轮廓识别--识别出选项thresh = cv.threshold(warped, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)[1]cvshow('thresh', thresh)thresh_cnts, _ = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)w_copy = warped.copy()cv.drawContours(w_copy, thresh_cnts, -1, (0, 0, 255), 2)cvshow('warped_contours', w_copy) questionCnts = []# 遍历,挑出选项的cntsfor c in thresh_cnts: (x, y, w, h) = cv.boundingRect(c) ar = w / float(h) # 根据实际情况指定标准 if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1: questionCnts.append(c) # 检查是否挑出了选项w_copy2 = warped.copy()cv.drawContours(w_copy2, questionCnts, -1, (0, 0, 255), 2)cvshow('questionCnts', w_copy2)
成功将无关轮廓剔除
检测每一行选择的是哪一项,并将结果储存起来,记录正确的个数
# 检测每一行选择的是哪一项,并将结果储存在元组bubble中,记录正确的个数correct# 按照从上到下t2b对轮廓进行排序questionCnts = sort_contours(questionCnts, method="t2b")[0]correct = 0# 每行有5个选项for (i, q) in enumerate(np.arange(0, len(questionCnts), 5)): # 排序 cnts = sort_contours(questionCnts[q:q+5])[0] bubble = None # 得到每一个选项的mask并填充,与正确答案进行按位与操作获得重合点数 for (j, c) in enumerate(cnts): mask = np.zeros(thresh.shape, dtype='uint8') cv.drawContours(mask, [c], -1, 255, -1) # cvshow('mask', mask) # 通过按位与操作得到thresh与mask重合部分的像素数量 bitand = cv.bitwise_and(thresh, thresh, mask=mask) totalPixel = cv.countNonZero(bitand) if bubble is None or bubble[0] < totalPixel: bubble = (totalPixel, j) k = bubble[1] color = (0, 0, 255) if k == right_key[i]: correct += 1 color = (0, 255, 0) # 绘图 cv.drawContours(warped, [cnts[right_key[i]]], -1, color, 3) cvshow('final', warped)
def sort_contours(contours, method="l2r"): # 用于给轮廓排序,l2r, r2l, t2b, b2t reverse = False i = 0 if method == "r2l" or method == "b2t": reverse = True if method == "t2b" or method == "b2t": i = 1 boundingBoxes = [cv.boundingRect(c) for c in contours] (contours, boundingBoxes) = zip(*sorted(zip(contours, boundingBoxes), key=lambda a: a[1][i], reverse=reverse)) return contours, boundingBoxes
用透过mask的像素的个数来判断考生选择的是哪个选项
计算最终得分并在图中标注
# 计算最终得分并在图中标注score = (correct / 5.0) * 100print(f"Score: {score}%")cv.putText(warped, f"Score: {score}%", (10, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)cv.imshow("Original", img)cv.imshow("Exam", warped)cv.waitKey(0)
完整代码
import cv2 as cvimport numpy as np def cvshow(name, img): cv.imshow(name, img) cv.waitKey(0) cv.destroyAllWindows() def four_point_transform(img, four_points): rect = order_points(four_points) (tl, tr, br, bl) = rect # 计算输入的w和h的值 widthA = np.sqrt((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2) widthB = np.sqrt((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2) heightB = np.sqrt((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2) maxHeight = max(int(heightA), int(heightB)) # 变换后对应的坐标位置 dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype='float32') # 最主要的函数就是 cv2.getPerspectiveTransform(rect, dst) 和 cv2.warpPerspective(image, M, (maxWidth, maxHeight)) M = cv.getPerspectiveTransform(rect, dst) warped = cv.warpPerspective(img, M, (maxWidth, maxHeight)) return warped def order_points(points): res = np.zeros((4, 2), dtype='float32') # 按照从前往后0,1,2,3分别表示左上、右上、右下、左下的顺序将points中的数填入res中 # 将四个坐标x与y相加,和最大的那个是右下角的坐标,最小的那个是左上角的坐标 sum_hang = points.sum(axis=1) res[0] = points[np.argmin(sum_hang)] res[2] = points[np.argmax(sum_hang)] # 计算坐标x与y的离散插值np.diff() diff = np.diff(points, axis=1) res[1] = points[np.argmin(diff)] res[3] = points[np.argmax(diff)] # 返回result return res def sort_contours(contours, method="l2r"): # 用于给轮廓排序,l2r, r2l, t2b, b2t reverse = False i = 0 if method == "r2l" or method == "b2t": reverse = True if method == "t2b" or method == "b2t": i = 1 boundingBoxes = [cv.boundingRect(c) for c in contours] (contours, boundingBoxes) = zip(*sorted(zip(contours, boundingBoxes), key=lambda a: a[1][i], reverse=reverse)) return contours, boundingBoxes # 正确答案right_key = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1} # 输入图像img = cv.imread('./images/test_01.jpg')img_copy = img.copy()img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)cvshow('img-gray', img_gray) # 图像预处理# 高斯降噪img_gaussian = cv.GaussianBlur(img_gray, (5, 5), 1)cvshow('gaussianblur', img_gaussian)# canny边缘检测img_canny = cv.Canny(img_gaussian, 80, 150)cvshow('canny', img_canny) # 轮廓识别--答题卡边缘识别cnts, hierarchy = cv.findContours(img_canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)cv.drawContours(img_copy, cnts, -1, (0, 0, 255), 3)cvshow('contours-show', img_copy) docCnt = None # 确保检测到了if len(cnts) > 0: # 根据轮廓大小进行排序 cnts = sorted(cnts, key=cv.contourArea, reverse=True) # 遍历每一个轮廓 for c in cnts: # 近似 peri = cv.arcLength(c, True) # arclength 计算一段曲线的长度或者闭合曲线的周长; # 第一个参数输入一个二维向量,第二个参数表示计算曲线是否闭合 approx = cv.approxPolyDP(c, 0.02 * peri, True) # 用一条顶点较少的曲线/多边形来近似曲线/多边形,以使它们之间的距离<=指定的精度; # c是需要近似的曲线,0.02*peri是精度的最大值,True表示曲线是闭合的 # 准备做透视变换 if len(approx) == 4: docCnt = approx break # 透视变换--提取答题卡主体docCnt = docCnt.reshape(4, 2)warped = four_point_transform(img_gray, docCnt)cvshow('warped', warped) # 轮廓识别--识别出选项thresh = cv.threshold(warped, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)[1]cvshow('thresh', thresh)thresh_cnts, _ = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)w_copy = warped.copy()cv.drawContours(w_copy, thresh_cnts, -1, (0, 0, 255), 2)cvshow('warped_contours', w_copy) questionCnts = []# 遍历,挑出选项的cntsfor c in thresh_cnts: (x, y, w, h) = cv.boundingRect(c) ar = w / float(h) # 根据实际情况指定标准 if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1: questionCnts.append(c) # 检查是否挑出了选项w_copy2 = warped.copy()cv.drawContours(w_copy2, questionCnts, -1, (0, 0, 255), 2)cvshow('questionCnts', w_copy2) # 检测每一行选择的是哪一项,并将结果储存在元组bubble中,记录正确的个数correct# 按照从上到下t2b对轮廓进行排序questionCnts = sort_contours(questionCnts, method="t2b")[0]correct = 0# 每行有5个选项for (i, q) in enumerate(np.arange(0, len(questionCnts), 5)): # 排序 cnts = sort_contours(questionCnts[q:q+5])[0] bubble = None # 得到每一个选项的mask并填充,与正确答案进行按位与操作获得重合点数 for (j, c) in enumerate(cnts): mask = np.zeros(thresh.shape, dtype='uint8') cv.drawContours(mask, [c], -1, 255, -1) cvshow('mask', mask) # 通过按位与操作得到thresh与mask重合部分的像素数量 bitand = cv.bitwise_and(thresh, thresh, mask=mask) totalPixel = cv.countNonZero(bitand) if bubble is None or bubble[0] < totalPixel: bubble = (totalPixel, j) k = bubble[1] color = (0, 0, 255) if k == right_key[i]: correct += 1 color = (0, 255, 0) # 绘图 cv.drawContours(warped, [cnts[right_key[i]]], -1, color, 3) cvshow('final', warped) # 计算最终得分并在图中标注score = (correct / 5.0) * 100print(f"Score: {score}%")cv.putText(warped, f"Score: {score}%", (10, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)cv.imshow("Original", img)cv.imshow("Exam", warped)cv.waitKey(0)
以上是"如何使用OpenCV-Python实现识别答题卡判卷功能"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!
轮廓
答题卡
曲线
坐标
排序
检测
边缘
变换
输入
图像
个数
多边形
得分
答案
选择
闭合
一行
主体
参数
结果
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
星爵网络技术有限公司
浙江鸿鹄网络技术有限公司
软件技术安装软件开发方向
工会数据库软件
肇庆金融软件开发订制
边游网络技术
珠海嵌入式软件开发流程哪家好
下载程序网络安全常识
sql中最重要的数据库
数据库表数据落地
太原服务器数据恢复
ncbi蛋白数据库登录号
ibm服务器远程管理软件
数据库scanf什么意思
mysql 服务器安装
微光互联网科技有限公司
网络技术学院都有什么专业
db2数据库恢复命令
计算机网络技术读出来能干啥
zanti连接服务器失败
世界网络安全公司有哪些
数据库查询最小两个
文体旅软件开发
科技赋能互联网保险业务
适合女生学的网络技术
文件传输和数据库实例关系
工行软件开发待遇
越秀区数据网络技术开发推荐厂家
互联网金融与科技金融异同
服务器管理维护类认证证书