Hadoop2.6.0学习笔记(一)MapReduce介绍
鲁春利的工作笔记,谁说程序员不能有文艺范?
Hadoop是大数据处理的存储和计算平台,HDFS主要用来实现数据存储,MapReduce实现数据的计算。
MapReduce内部已经封装了分布式的计算功能,在做业务功能开发时用户只需要继承Mapper和Reducer这两个类,并分别实现map()和reduce()方法即可。
1、Map阶段
读取hdfs中的数据,然后把原始数据进行规范处理,转化为有利于后续进行处理的数据形式。
2、Reduce阶段
接受map阶段输出的数据,自身进行汇总,然后把结果写入到hdfs中。
map和reduce接收的形参是
hadoop1中,jobtracker和tasktracker。
hadoop2中,yarn上有resourcemanager和nodemanager。
Mapper端
# Hadoop提供的Mapper,自定义的Mapper需要继承该类package org.apache.hadoop.mapreduce;public class Mapper{ /** * Called once at the beginning of the task. */ protected void setup(Context context) throws IOException, InterruptedException { // NOTHING } /** * Called once for each key/value pair in the input split. * Most applications should override this, but the default is the identity function. */ @SuppressWarnings("unchecked") protected void map(KEYIN key, VALUEIN value, Context context) throws IOException, InterruptedException { context.write((KEYOUT) key, (VALUEOUT) value); } /** * Called once at the end of the task. */ protected void cleanup(Context context) throws IOException, InterruptedException { // NOTHING } /** * Expert users can override this method for more complete control over the * * @param context * @throws IOException */ public void run(Context context) throws IOException, InterruptedException { setup(context); try { while (context.nextKeyValue()) { map(context.getCurrentKey(), context.getCurrentValue(), context); } } finally { cleanup(context); } }}
Reducer
# Hadoop提供的Reducer,自定义的Reducer需要继承该类package org.apache.hadoop.mapreduce;public class Reducer{ /** * Called once at the start of the task. */ protected void setup(Context context) throws IOException, InterruptedException { // NOTHING } /** * This method is called once for each key. * Most applications will define their reduce class by overriding this method. * The default implementation is an identity function. */ @SuppressWarnings("unchecked") protected void reduce(KEYIN key, Iterable values, Context context) throws IOException, InterruptedException { for(VALUEIN value: values) { context.write((KEYOUT) key, (VALUEOUT) value); } } /** * Called once at the end of the task. */ protected void cleanup(Context context) throws IOException, InterruptedException { // NOTHING } /** * Advanced application writers can use the * {@link #run(org.apache.hadoop.mapreduce.Reducer.Context)} method to * control how the reduce task works. */ public void run(Context context) throws IOException, InterruptedException { setup(context); try { while (context.nextKey()) { reduce(context.getCurrentKey(), context.getValues(), context); // If a back up store is used, reset it Iterator iter = context.getValues().iterator(); if(iter instanceof ReduceContext.ValueIterator) { ((ReduceContext.ValueIterator )iter).resetBackupStore(); } } } finally { cleanup(context); } }}
Map过程
自定义Mapper类继承自该Mapper.class,类Mapper
1、读取输入文件内容,解析成
2、在map()函数中实现自己的业务逻辑,对输入的
3、对输出的
4、对不同分组的数据,按照key进行排序、分组,相同key的value放到一个集合中;
5、分组后的数据进行归并处理。
说明:
用户指定输入文件的路径,HDFS可以会自动读取文件内容,一般为文本文件(也可以是其他的),每行调用一次map()函数,调用时每行的行偏移量作为key,行内容作为value传入map中;
MR是分布式的计算框架,map与reduce可能都有多个任务在执行,分区的目的是为了确认哪些map输出应该由哪个reduce来进行接收处理。
map端的shuffle过程随着后续的学习再进行补充。
单词计数举例:
[hadoop@nnode hadoop2.6.0]$ hdfs dfs -cat /data/file1.txthello worldhello markhuanghello hadoop[hadoop@nnode hadoop2.6.0]$
每次传入时都是一行行的读取的,每次调用map函数分别传入的数据是<0, hello world>, <12, hello markhuang>, <28, hello hadoop>
在每次map函数处理时,key为LongWritable类型的,无需处理,只需要对接收到的value进行处理即可。由于是需要进行计数,因此需要对value的值进行split,split后每个单词记一次(出现次数1)。
KEYIN, VALUEIN, KEYOUT, VALUEOUT=>IntWritable, Text, Text, IntWritable
Reduce过程
自定义Reducer类继承自Reducer
1、对多个map任务的输出,按照不同的分区,通过网络拷贝到不同的reduce节点;
2、对多个任务的输出进行何必、排序,通过自定义业务逻辑进行处理;
3、把reduce的输出保存到指定文件中。
说明:
reduce接收的输入数据Value按key分组(group),而group按照key排序,形成了
单词计数举例:
有四组数据
依次调用reduce方法,并作为key,value传入,在reduce中通过业务逻辑处理。
KEYIN,VALUEIN,KEYOUT,VALUEOUT=>Text,IntWritable, Text,IntWritable
单词计数程序代码:
Map端
package com.lucl.hadoop.mapreduce;import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper;// map端public class CustomizeMapper extends Mapper{ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { LongWritable one = new LongWritable(1); Text word = new Text(); StringTokenizer token = new StringTokenizer(value.toString()); while (token.hasMoreTokens()) { String v = token.nextToken(); word.set(v); context.write(word, one); } }}
Reduce端
package com.lucl.hadoop.mapreduce;import java.io.IOException;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Reducer;// reduce端public class CustomizeReducer extends Reducer{ @Override protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { int sum = 0; for (LongWritable intWritable : values) { sum += intWritable.get(); } context.write(key, new LongWritable(sum)); }}
驱动类
package com.lucl.hadoop.mapreduce;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;import org.apache.hadoop.util.Tool;import org.apache.hadoop.util.ToolRunner;import org.apache.log4j.Logger;/** * * @author lucl * */public class MyWordCountApp extends Configured implements Tool{ private static final Logger logger = Logger.getLogger(MyWordCountApp.class); public static void main(String[] args) { try { ToolRunner.run(new MyWordCountApp(), args); } catch (Exception e) { e.printStackTrace(); } } @Override public int run(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length < 2) { logger.info("Usage: wordcount[ ...] "); System.exit(2); } /** * 每个map作为一个job任务运行 */ Job job = Job.getInstance(conf , this.getClass().getSimpleName()); job.setJarByClass(MyWordCountApp.class); /** * 指定输入文件或目录 */ FileInputFormat.addInputPaths(job, args[0]); // 目录 /** * map端相关设置 */ job.setMapperClass(CustomizeMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); /** * reduce端相关设置 */ job.setReducerClass(CustomizeReducer.class); job.setCombinerClass(CustomizeReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); /** * 指定输出文件目录 */ FileOutputFormat.setOutputPath(job, new Path(args[1])); return job.waitForCompletion(true) ? 0 : 1; }}
单词计数程序调用:
[hadoop@nnode code]$ hadoop jar WCApp.jar /data /wc-20151129010115/11/29 00:20:37 INFO client.RMProxy: Connecting to ResourceManager at nnode/192.168.137.117:803215/11/29 00:20:38 INFO input.FileInputFormat: Total input paths to process : 215/11/29 00:20:39 INFO mapreduce.JobSubmitter: number of splits:215/11/29 00:20:39 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1448694510754_000415/11/29 00:20:39 INFO impl.YarnClientImpl: Submitted application application_1448694510754_000415/11/29 00:20:39 INFO mapreduce.Job: The url to track the job: http://nnode:8088/proxy/application_1448694510754_0004/15/11/29 00:20:39 INFO mapreduce.Job: Running job: job_1448694510754_000415/11/29 00:21:10 INFO mapreduce.Job: Job job_1448694510754_0004 running in uber mode : false15/11/29 00:21:10 INFO mapreduce.Job: map 0% reduce 0/11/29 00:21:41 INFO mapreduce.Job: map 100% reduce 0/11/29 00:22:01 INFO mapreduce.Job: map 100% reduce 100/11/29 00:22:02 INFO mapreduce.Job: Job job_1448694510754_0004 completed successfully15/11/29 00:22:02 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=134 FILE: Number of bytes written=323865 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=271 HDFS: Number of bytes written=55 HDFS: Number of read operations=9 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=2 Launched reduce tasks=1 Data-local map tasks=2 Total time spent by all maps in occupied slots (ms)=55944 Total time spent by all reduces in occupied slots (ms)=17867 Total time spent by all map tasks (ms)=55944 Total time spent by all reduce tasks (ms)=17867 Total vcore-seconds taken by all map tasks=55944 Total vcore-seconds taken by all reduce tasks=17867 Total megabyte-seconds taken by all map tasks=57286656 Total megabyte-seconds taken by all reduce tasks=18295808 Map-Reduce Framework Map input records=6 Map output records=12 Map output bytes=170 Map output materialized bytes=140 Input split bytes=188 Combine input records=12 Combine output records=8 Reduce input groups=7 Reduce shuffle bytes=140 Reduce input records=8 Reduce output records=7 Spilled Records=16 Shuffled Maps =2 Failed Shuffles=0 Merged Map outputs=2 GC time elapsed (ms)=315 CPU time spent (ms)=2490 Physical memory (bytes) snapshot=510038016 Virtual memory (bytes) snapshot=2541662208 Total committed heap usage (bytes)=257171456 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=83 File Output Format Counters Bytes Written=55[hadoop@nnode code]$
单词计数程序输出结果:
[hadoop@nnode ~]$ hdfs dfs -ls /wc-201511290101Found 2 items-rw-r--r-- 2 hadoop hadoop 0 2015-11-29 00:22 /wc-201511290101/_SUCCESS-rw-r--r-- 2 hadoop hadoop 55 2015-11-29 00:21 /wc-201511290101/part-r-00000[hadoop@nnode ~]$ hdfs dfs -text /wc-201511290101/part-r-000002.3 1fail 1hadoop 4hello 3markhuang 1ok 1world 1[hadoop@nnode ~]$