pytorch中网络和损失函数可视化的示例分析
发表于:2025-01-23 作者:千家信息网编辑
千家信息网最后更新 2025年01月23日,小编给大家分享一下pytorch中网络和损失函数可视化的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1.效果2.
千家信息网最后更新 2025年01月23日pytorch中网络和损失函数可视化的示例分析
小编给大家分享一下pytorch中网络和损失函数可视化的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
1.效果
2.环境
1.pytorch
2.visdom
3.python3.5
3.用到的代码
# coding:utf8import torchfrom torch import nn, optim # nn 神经网络模块 optim优化函数模块from torch.utils.data import DataLoaderfrom torch.autograd import Variablefrom torchvision import transforms, datasetsfrom visdom import Visdom # 可视化处理模块import timeimport numpy as np# 可视化appviz = Visdom()# 超参数BATCH_SIZE = 40LR = 1e-3EPOCH = 2# 判断是否使用gpuUSE_GPU = Trueif USE_GPU: gpu_status = torch.cuda.is_available()else: gpu_status = Falsetransform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])# 数据引入train_dataset = datasets.MNIST('../data', True, transform, download=False)test_dataset = datasets.MNIST('../data', False, transform)train_loader = DataLoader(train_dataset, BATCH_SIZE, True)# 为加快测试,把测试数据从10000缩小到2000test_data = torch.unsqueeze(test_dataset.test_data, 1)[:1500]test_label = test_dataset.test_labels[:1500]# visdom可视化部分数据viz.images(test_data[:100], nrow=10)#viz.images(test_data[:100], nrow=10)# 为防止可视化视窗重叠现象,停顿0.5秒time.sleep(0.5)if gpu_status: test_data = test_data.cuda()test_data = Variable(test_data, volatile=True).float()# 创建线图可视化窗口line = viz.line(np.arange(10))# 创建cnn神经网络class CNN(nn.Module): def __init__(self, in_dim, n_class): super(CNN, self).__init__() self.conv = nn.Sequential( # channel 为信息高度 padding为图片留白 kernel_size 扫描模块size(5x5) nn.Conv2d(in_channels=in_dim, out_channels=16,kernel_size=5,stride=1, padding=2), nn.ReLU(), # 平面缩减 28x28 >> 14*14 nn.MaxPool2d(kernel_size=2), nn.Conv2d(16, 32, 3, 1, 1), nn.ReLU(), # 14x14 >> 7x7 nn.MaxPool2d(2) ) self.fc = nn.Sequential( nn.Linear(32*7*7, 120), nn.Linear(120, n_class) ) def forward(self, x): out = self.conv(x) out = out.view(out.size(0), -1) out = self.fc(out) return outnet = CNN(1,10)if gpu_status : net = net.cuda() #print("#"*26, "使用gpu", "#"*26)else: #print("#" * 26, "使用cpu", "#" * 26) pass# loss、optimizer 函数设置loss_f = nn.CrossEntropyLoss()optimizer = optim.Adam(net.parameters(), lr=LR)# 起始时间设置start_time = time.time()# 可视化所需数据点time_p, tr_acc, ts_acc, loss_p = [], [], [], []# 创建可视化数据视窗text = viz.text("convolution Nueral Network
")for epoch in range(EPOCH): # 由于分批次学习,输出loss为一批平均,需要累积or平均每个batch的loss,acc sum_loss, sum_acc, sum_step = 0., 0., 0. for i, (tx, ty) in enumerate(train_loader, 1): if gpu_status: tx, ty = tx.cuda(), ty.cuda() tx = Variable(tx) ty = Variable(ty) out = net(tx) loss = loss_f(out, ty) #print(tx.size()) #print(ty.size()) #print(out.size()) sum_loss += loss.item()*len(ty) #print(sum_loss) pred_tr = torch.max(out,1)[1] sum_acc += sum(pred_tr==ty).item() sum_step += ty.size(0) # 学习反馈 optimizer.zero_grad() loss.backward() optimizer.step() # 每40个batch可视化一下数据 if i % 40 == 0: if gpu_status: test_data = test_data.cuda() test_out = net(test_data) print(test_out.size()) # 如果用gpu运行out数据为cuda格式需要.cpu()转化为cpu数据 在进行比较 pred_ts = torch.max(test_out, 1)[1].cpu().data.squeeze() print(pred_ts.size()) rightnum = pred_ts.eq(test_label.view_as(pred_ts)).sum().item() #rightnum =sum(pred_tr==ty).item() # sum_acc += sum(pred_tr==ty).item() acc = rightnum/float(test_label.size(0)) print("epoch: [{}/{}] | Loss: {:.4f} | TR_acc: {:.4f} | TS_acc: {:.4f} | Time: {:.1f}".format(epoch+1, EPOCH, sum_loss/(sum_step), sum_acc/(sum_step), acc, time.time()-start_time)) # 可视化部分 time_p.append(time.time()-start_time) tr_acc.append(sum_acc/sum_step) ts_acc.append(acc) loss_p.append(sum_loss/sum_step) viz.line(X=np.column_stack((np.array(time_p), np.array(time_p), np.array(time_p))), Y=np.column_stack((np.array(loss_p), np.array(tr_acc), np.array(ts_acc))), win=line, opts=dict(legend=["Loss", "TRAIN_acc", "TEST_acc"])) # visdom text 支持html语句 viz.text("epoch:{}
Loss:{:.4f}
" "TRAIN_acc:{:.4f}
TEST_acc:{:.4f}
" "Time:{:.2f}
".format(epoch, sum_loss/sum_step, sum_acc/sum_step, acc, time.time()-start_time), win=text) sum_loss, sum_acc, sum_step = 0., 0., 0.
以上是"pytorch中网络和损失函数可视化的示例分析"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!
可视化
数据
函数
网络
模块
篇文章
学习
损失
示例
分析
内容
神经
神经网络
视窗
部分
测试
不怎么
代码
信息
参数
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
服务器的公网ipv4地址怎么看
卫星无线网络技术
网络安全管理制度 电厂
中小产业园区软件开发商
搬家服务软件开发去哪找
数据库集群+访问层
国网云网络安全
数据库原理与应用上机题
奉贤区个性化网络技术转让材料
win7使用的数据库类型
承德软件开发制作
丰台二手服务器回收门店
软件测试可以转软件开发吗
数据库数据查询考点
网络安全资质经理
科美c7000服务器关了灯还亮
shell脚本对数据库表取数
金蝶k3数据库底稿表
腾讯网络安全部部长
Gps轨迹从数据库中实时查询
不属于网络安全风险评估
中文学位论文数据库检索实验内容
pc610是什么服务器
怎么搭建mc服务器
如何选定软件开发模型
波场网络安全性差
网络安全演讲模板
itunes联系服务器没反应
织梦怎么接入数据库
数据库中size的默认大小