生产常用Spark累加器剖析之一
由于最近在项目中需要用到Spark的累加器,同时需要自己去自定义实现Spark的累加器,从而满足生产上的需求。对此,对Spark的累加器实现机制进行了追踪学习。
本系列文章,将从以下几个方面入手,对Spark累加器进行剖析:
Spark累加器的基本概念
累加器的重点类构成
累加器的源码解析
累加器的执行过程
累加器使用中的坑
自定义累加器的实现
Spark累加器基本概念
Spark提供的Accumulator,主要用于多个节点对一个变量进行共享性的操作。Accumulator只提供了累加的功能,只能累加,不能减少累加器只能在Driver端构建,并只能从Driver端读取结果,在Task端只能进行累加。
至于这里为什么只能在Task累加呢?下面的内容将会进行详细的介绍,先简单介绍下:
在Task节点,准确的就是说在executor上;每个Task都会有一个累加器的变量,被序列化传输到executor端运行之后再返回过来都是独立运行的;如果在Task端去获取值的话,只能获取到当前Task的,Task与Task之间不会有影响
累加器不会改变Spark lazy计算的特点,只会在Job触发的时候进行相关的累加操作
现有累加器类型:
累加器的重点类介绍
class Accumulator extends Accumulable
源码(源码中已经对这个类的作用做了十分详细的解释):
/** * A simpler value of [[Accumulable]] where the result type being accumulated is the same * as the types of elements being merged, i.e. variables that are only "added" to through an * associative operation and can therefore be efficiently supported in parallel. They can be used * to implement counters (as in MapReduce) or sums. Spark natively supports accumulators of numeric * value types, and programmers can add support for new types. * * An accumulator is created from an initial value `v` by calling [[SparkContext#accumulator]]. * Tasks running on the cluster can then add to it using the [[Accumulable#+=]] operator. * However, they cannot read its value. Only the driver program can read the accumulator's value, * using its value method. * * @param initialValue initial value of accumulator * @param param helper object defining how to add elements of type `T` * @tparam T result type */class Accumulator[T] private[spark] ( @transient private[spark] val initialValue: T, param: AccumulatorParam[T], name: Option[String], internal: Boolean) extends Accumulable[T, T](initialValue, param, name, internal) { def this(initialValue: T, param: AccumulatorParam[T], name: Option[String]) = { this(initialValue, param, name, false) } def this(initialValue: T, param: AccumulatorParam[T]) = { this(initialValue, param, None, false) }}主要实现了累加器的初始化及封装了相关的累加器操作方法同时在类对象构建的时候向Accumulators注册累加器累加器的add操作的返回值类型和传入进去的值类型可以不一样所以一定要定义好两步操作(即add方法):累加操作/合并操作
object Accumulators
该方法在Driver端管理着累加器,也包含了累加器的聚合操作
trait AccumulatorParam[T] extends AccumulableParam[T, T]
源码:
/** * A simpler version of [[org.apache.spark.AccumulableParam]] where the only data type you can add * in is the same type as the accumulated value. An implicit AccumulatorParam object needs to be * available when you create Accumulators of a specific type. * * @tparam T type of value to accumulate */trait AccumulatorParam[T] extends AccumulableParam[T, T] { def addAccumulator(t1: T, t2: T): T = { addInPlace(t1, t2) }}AccumulatorParam的addAccumulator操作的泛型封装具体的实现还是需要在具体实现类里面实现addInPlace方法自定义实现累加器的关键
object AccumulatorParam
源码:
object AccumulatorParam { // The following implicit objects were in SparkContext before 1.2 and users had to // `import SparkContext._` to enable them. Now we move them here to make the compiler find // them automatically. However, as there are duplicate codes in SparkContext for backward // compatibility, please update them accordingly if you modify the following implicit objects. implicit object DoubleAccumulatorParam extends AccumulatorParam[Double] { def addInPlace(t1: Double, t2: Double): Double = t1 + t2 def zero(initialValue: Double): Double = 0.0 } implicit object IntAccumulatorParam extends AccumulatorParam[Int] { def addInPlace(t1: Int, t2: Int): Int = t1 + t2 def zero(initialValue: Int): Int = 0 } implicit object LongAccumulatorParam extends AccumulatorParam[Long] { def addInPlace(t1: Long, t2: Long): Long = t1 + t2 def zero(initialValue: Long): Long = 0L } implicit object FloatAccumulatorParam extends AccumulatorParam[Float] { def addInPlace(t1: Float, t2: Float): Float = t1 + t2 def zero(initialValue: Float): Float = 0f } // TODO: Add AccumulatorParams for other types, e.g. lists and strings}从源码中大量的implicit关键词,可以发现该类主要进行隐式类型转换的操作
TaskContextImpl
在Executor端管理着我们的累加器,累加器是通过该类进行返回的
累加器的源码解析
Driver端
accumulator方法
以下列这段代码中的accumulator方法为入口点,进入到相应的源码中去
val acc = new Accumulator(initialValue, param, Some(name))
源码:
class Accumulator[T] private[spark] ( @transient private[spark] val initialValue: T, param: AccumulatorParam[T], name: Option[String], internal: Boolean) extends Accumulable[T, T](initialValue, param, name, internal) { def this(initialValue: T, param: AccumulatorParam[T], name: Option[String]) = { this(initialValue, param, name, false) } def this(initialValue: T, param: AccumulatorParam[T]) = { this(initialValue, param, None, false) }}
继承的Accumulable[T, T]
源码:
class Accumulable[R, T] private[spark] ( initialValue: R, param: AccumulableParam[R, T], val name: Option[String], internal: Boolean) extends Serializable {…// 这里的_value并不支持序列化// 注:有@transient的都不会被序列化@volatile @transient private var value_ : R = initialValue // Current value on master … // 注册了当前的累加器 Accumulators.register(this) …, }
Accumulators.register()
源码:
// 传入参数,注册累加器def register(a: Accumulable[_, _]): Unit = synchronized {// 构造成WeakReferenceoriginals(a.id) = new WeakReference[Accumulable[_, _]](a)}
至此,Driver端的初始化已经完成
Executor端
Executor端的反序列化是一个得到我们的对象的过程初始化是在反序列化的时候就完成的,同时反序列化的时候还完成了Accumulator向TaskContextImpl的注册
TaskRunner中的run方法
// 在计算的过程中,会将RDD和function经过序列化之后传给Executor端private[spark] class Executor( executorId: String, executorHostname: String, env: SparkEnv, userClassPath: Seq[URL] = Nil, isLocal: Boolean = false) extends Logging {... class TaskRunner( execBackend: ExecutorBackend, val taskId: Long, val attemptNumber: Int, taskName: String, serializedTask: ByteBuffer) extends Runnable {…override def run(): Unit = { …val (value, accumUpdates) = try { // 调用TaskRunner中的task.run方法,触发task的运行 val res = task.run( taskAttemptId = taskId, attemptNumber = attemptNumber, metricsSystem = env.metricsSystem) threwException = false res } finally { … }…}
Task中的collectAccumulators()方法
private[spark] abstract class Task[T](final def run( taskAttemptId: Long, attemptNumber: Int, metricsSystem: MetricsSystem) : (T, AccumulatorUpdates) = { … try { // 返回累加器,并运行task // 调用TaskContextImpl的collectAccumulators,返回值的类型为一个Map (runTask(context), context.collectAccumulators()) } finally { … } … })
ResultTask中的runTask方法
override def runTask(context: TaskContext): U = { // Deserialize the RDD and the func using the broadcast variables. val deserializeStartTime = System.currentTimeMillis() val ser = SparkEnv.get.closureSerializer.newInstance() // 反序列化是在调用ResultTask的runTask方法的时候做的 // 会反序列化出来RDD和自己定义的function val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)]( ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime metrics = Some(context.taskMetrics) func(context, rdd.iterator(partition, context))}
Accumulable中的readObject方法
// 在反序列化的过程中会调用Accumulable.readObject方法 // Called by Java when deserializing an object private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException { in.defaultReadObject() // value的初始值为zero;该值是会被序列化的 value_ = zero deserialized = true // Automatically register the accumulator when it is deserialized with the task closure. // // Note internal accumulators sent with task are deserialized before the TaskContext is created // and are registered in the TaskContext constructor. Other internal accumulators, such SQL // metrics, still need to register here. val taskContext = TaskContext.get() if (taskContext != null) { // 当前反序列化所得到的对象会被注册到TaskContext中 // 这样TaskContext就可以获取到累加器 // 任务运行结束之后,就可以通过context.collectAccumulators()返回给executor taskContext.registerAccumulator(this) } }
Executor.scala
// 在executor端拿到accumuUpdates值之后,会去构造一个DirectTaskResultval directResult = new DirectTaskResult(valueBytes, accumUpdates, task.metrics.orNull)val serializedDirectResult = ser.serialize(directResult)val resultSize = serializedDirectResult.limit…// 最终由ExecutorBackend的statusUpdate方法发送至Driver端// ExecutorBackend为一个Trait,有多种实现execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
CoarseGrainedExecutorBackend中的statusUpdate方法
// 通过ExecutorBackend的一个实现类:CoarseGrainedExecutorBackend 中的statusUpdate方法// 将数据发送至Driver端override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) { val msg = StatusUpdate(executorId, taskId, state, data) driver match { case Some(driverRef) => driverRef.send(msg) case None => logWarning(s"Drop $msg because has not yet connected to driver") } }
CoarseGrainedSchedulerBackend中的receive方法
// Driver端在接收到消息之后,会调用CoarseGrainedSchedulerBackend中的receive方法override def receive: PartialFunction[Any, Unit] = { case StatusUpdate(executorId, taskId, state, data) => // 会在DAGScheduler的handleTaskCompletion方法中将结果返回 scheduler.statusUpdate(taskId, state, data.value) …}
TaskSchedulerImpl的statusUpdate方法
def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer) { … if (state == TaskState.FINISHED) { taskSet.removeRunningTask(tid) // 将成功的Task入队 taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData) } else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) { taskSet.removeRunningTask(tid) taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData) } …}
TaskResultGetter的enqueueSuccessfulTask方法
def enqueueSuccessfulTask(taskSetManager: TaskSetManager, tid: Long, serializedData: ByteBuffer) {… result.metrics.setResultSize(size) scheduler.handleSuccessfulTask(taskSetManager, tid, result)…
TaskSchedulerImpl的handleSuccessfulTask方法
def handleSuccessfulTask( taskSetManager: TaskSetManager, tid: Long, taskResult: DirectTaskResult[_]): Unit = synchronized { taskSetManager.handleSuccessfulTask(tid, taskResult) }
DAGScheduler的taskEnded方法
def taskEnded( task: Task[_], reason: TaskEndReason, result: Any, accumUpdates: Map[Long, Any], taskInfo: TaskInfo, taskMetrics: TaskMetrics): Unit = { eventProcessLoop.post( // 给自身的消息循环体发了个CompletionEvent // 这个CompletionEvent会被handleTaskCompletion方法所接收到 CompletionEvent(task, reason, result, accumUpdates, taskInfo, taskMetrics)) }
DAGScheduler的handleTaskCompletion方法
// 与上述CoarseGrainedSchedulerBackend中的receive方法章节对应// 在handleTaskCompletion方法中,接收CompletionEvent// 不论是ResultTask还是ShuffleMapTask都会去调用updateAccumulators方法,更新累加器的值private[scheduler] def handleTaskCompletion(event: CompletionEvent) { … event.reason match { case Success => listenerBus.post(SparkListenerTaskEnd(stageId, stage.latestInfo.attemptId, taskType, event.reason, event.taskInfo, event.taskMetrics)) stage.pendingPartitions -= task.partitionId task match { case rt: ResultTask[_, _] => // Cast to ResultStage here because it's part of the ResultTask // TODO Refactor this out to a function that accepts a ResultStageval resultStage = stage.asInstanceOf[ResultStage] resultStage.activeJob match { case Some(job) => if (!job.finished(rt.outputId)) { updateAccumulators(event) case smt: ShuffleMapTask => val shuffleStage = stage.asInstanceOf[ShuffleMapStage] updateAccumulators(event)}…}
DAGScheduler的updateAccumulators方法
private def updateAccumulators(event: CompletionEvent): Unit = { val task = event.task val stage = stageIdToStage(task.stageId) if (event.accumUpdates != null) { try { // 调用了累加器的add方法 Accumulators.add(event.accumUpdates)
Accumulators的add方法
def add(values: Map[Long, Any]): Unit = synchronized { // 遍历传进来的值 for ((id, value) <- values) { if (originals.contains(id)) { // Since we are now storing weak references, we must check whether the underlying data // is valid. // 根据id从注册的Map中取出对应的累加器 originals(id).get match { // 将值给累加起来,最终将结果加到value里面 // ++=是被重载了 case Some(accum) => accum.asInstanceOf[Accumulable[Any, Any]] ++= value case None => throw new IllegalAccessError("Attempted to access garbage collected Accumulator.") } } else { logWarning(s"Ignoring accumulator update for unknown accumulator id $id") } } }
Accumulators的++=方法
def ++= (term: R) { value_ = param.addInPlace(value_, term)}
Accumulators的value方法
def value: R = { if (!deserialized) { value_ } else { throw new UnsupportedOperationException("Can't read accumulator value in task") } }
此时我们的应用程序就可以通过 .value 的方式去获取计数器的值了