千家信息网

PostgreSQL中make_rel_from_joinlist函数分析

发表于:2025-02-01 作者:千家信息网编辑
千家信息网最后更新 2025年02月01日,这篇文章主要介绍"PostgreSQL中make_rel_from_joinlist函数分析",在日常操作中,相信很多人在PostgreSQL中make_rel_from_joinlist函数分析问题
千家信息网最后更新 2025年02月01日PostgreSQL中make_rel_from_joinlist函数分析

这篇文章主要介绍"PostgreSQL中make_rel_from_joinlist函数分析",在日常操作中,相信很多人在PostgreSQL中make_rel_from_joinlist函数分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"PostgreSQL中make_rel_from_joinlist函数分析"的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

一、源码解读

make_rel_from_joinlist函数根据连接关系链表(joinlist)通过外部算法(钩子函数)/遗传算法/动态规划算法构建连接路径,其中joinlist链表在主函数中已通过调用deconstruct_jointree函数生成.
动态规划算法的实现standard_join_search函数以及遗传算法在后续章节再行介绍.

 /*  * make_rel_from_joinlist  *    Build access paths using a "joinlist" to guide the join path search.  *    依据deconstruct_jointree函数构造的joinlist生成连接路径.  *    joinlist详细的数据结构参照deconstruct_jointree函数注释  *  * See comments for deconstruct_jointree() for definition of the joinlist  * data structure.  */ static RelOptInfo * make_rel_from_joinlist(PlannerInfo *root, List *joinlist) {     int         levels_needed;     List       *initial_rels;     ListCell   *jl;      /*      * Count the number of child joinlist nodes.  This is the depth of the      * dynamic-programming algorithm we must employ to consider all ways of      * joining the child nodes.      * 计算joinlist链表中节点的个数。      * 确定使用的算法(动态规划算法 vs 遗传算法),如个数<阈值,则考虑所有连接的方式。      */     levels_needed = list_length(joinlist);      if (levels_needed <= 0)         return NULL;            /* nothing to do? */      /*      * Construct a list of rels corresponding to the child joinlist nodes.      * This may contain both base rels and rels constructed according to      * sub-joinlists.      * 构造与joinlist中元素相对应的rels链表。      * 这可能包括base rels和通过子连接构造的base rels。      */     initial_rels = NIL;     foreach(jl, joinlist)//遍历链表     {         Node       *jlnode = (Node *) lfirst(jl);         RelOptInfo *thisrel;          if (IsA(jlnode, RangeTblRef))//RTR         {             int         varno = ((RangeTblRef *) jlnode)->rtindex;              thisrel = find_base_rel(root, varno);//根据编号找到相应的RelOptInfo         }         else if (IsA(jlnode, List))//链表         {             /* Recurse to handle subproblem */             thisrel = make_rel_from_joinlist(root, (List *) jlnode);//递归调用,形成新的base rel         }         else//其他类型,出错         {             elog(ERROR, "unrecognized joinlist node type: %d",                  (int) nodeTag(jlnode));             thisrel = NULL;     /* keep compiler quiet */         }          initial_rels = lappend(initial_rels, thisrel);//添加到base rel链表中     }      if (levels_needed == 1)//连接链表只有1个元素     {         /*          * Single joinlist node, so we're done.          */         return (RelOptInfo *) linitial(initial_rels);//直接返回     }     else//>1个元素     {         /*          * Consider the different orders in which we could join the rels,          * using a plugin, GEQO, or the regular join search code.          * 考虑不同的连接顺序->使用外部算法/GEQO遗传算法/动态规划算法。          *          * We put the initial_rels list into a PlannerInfo field because          * has_legal_joinclause() needs to look at it (ugly :-().          *          */         root->initial_rels = initial_rels;          if (join_search_hook)//调用钩子函数             return (*join_search_hook) (root, levels_needed, initial_rels);         else if (enable_geqo && levels_needed >= geqo_threshold)             return geqo(root, levels_needed, initial_rels);//遗传算法         else             return standard_join_search(root, levels_needed, initial_rels);//动态规划算法     } } //----------------------------------------------------------------------- standard_join_search /*  * standard_join_search  *    Find possible joinpaths for a query by successively finding ways  *    to join component relations into join relations.  *    通过动态规划算法为查询语句构造连接路径.  *  * 'levels_needed' is the number of iterations needed, ie, the number of  *      independent jointree items in the query.  This is > 1.  * levels_needed-连接链表中的节点个数,>1  *  * 'initial_rels' is a list of RelOptInfo nodes for each independent  *      jointree item.  These are the components to be joined together.  *      Note that levels_needed == list_length(initial_rels).  * initial_rels-与连接树每个元素相对应的RelOptInfo节点  *  * Returns the final level of join relations, i.e., the relation that is  * the result of joining all the original relations together.  * At least one implementation path must be provided for this relation and  * all required sub-relations.  * 返回连接的最终关系(最顶层的Relation):将所有原始关系连接在一起的最终结果。  * 优化器为该关系及其所必需的子关系提供至少一个的实现路径。  *  * To support loadable plugins that modify planner behavior by changing the  * join searching algorithm, we provide a hook variable that lets a plugin  * replace or supplement this function.  Any such hook must return the same  * final join relation as the standard code would, but it might have a  * different set of implementation paths attached, and only the sub-joinrels  * needed for these paths need have been instantiated.  * 为了支持自定义函数,PG提供了一个钩子变量,允许外部插件替换或填充这个函数。  * 任何这样的钩子都必须返回与PG标准函数相同的最终连接关系,  * 但是它可能附加了一组不同的实现路径,并且只实例化了这些路径所需的子连接。  *  * Note to plugin authors: the functions invoked during standard_join_search()  * modify root->join_rel_list and root->join_rel_hash.  If you want to do more  * than one join-order search, you'll probably need to save and restore the  * original states of those data structures.  See geqo_eval() for an example.  */ RelOptInfo * standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels) {     int         lev;     RelOptInfo *rel;      /*      * This function cannot be invoked recursively within any one planning      * problem, so join_rel_level[] can't be in use already.      */     Assert(root->join_rel_level == NULL);//验证      /*      * We employ a simple "dynamic programming" algorithm: we first find all      * ways to build joins of two jointree items, then all ways to build joins      * of three items (from two-item joins and single items), then four-item      * joins, and so on until we have considered all ways to join all the      * items into one rel.      * PG实现了一种简单的动态规划算法:首先为连接树中的两个Relation建立可能的连接路径      * 然后为三个Relation建立所有可能的连接路径,以此类推直至已为所有的Relation建立了      * 连接路径,从而得到最终的关系(final_rel)      *       * root->join_rel_level[j] is a list of all the j-item rels.  Initially we      * set root->join_rel_level[1] to represent all the single-jointree-item      * relations.      * 设置root->join_rel_level数组,[j]是所有j-item rels的链表(即1个item的放在[1]中)      */     root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *));      root->join_rel_level[1] = initial_rels;//1个item对应的rel链表      for (lev = 2; lev <= levels_needed; lev++)//构造2->N个item对应的rel链表     {         ListCell   *lc;          /*          * Determine all possible pairs of relations to be joined at this          * level, and build paths for making each one from every available          * pair of lower-level relations.          * 确定在此级别上要连接的所有可能的关系对,并构建访问路径,          * 以从每一对可用的较低级关系中往上创建关系。          */         join_search_one_level(root, lev);          /*          * Run generate_partitionwise_join_paths() and generate_gather_paths()          * for each just-processed joinrel.  We could not do this earlier          * because both regular and partial paths can get added to a          * particular joinrel at multiple times within join_search_one_level.          * 循环调用generate_partitionwise_join_paths()和generate_collect _paths()函数:          * 参数为上一步骤生成的链表中的每个元素。          * 由于常规路径和部分路径都可以在join_search_one_level中多次添加joinrel,因此在此处调用。          *          * After that, we're done creating paths for the joinrel, so run          * set_cheapest().          * 在此之后,PG已为joinrel(连接生成的新关系)创建了访问路径,因此可以调用函数set_cheapest          *          */         foreach(lc, root->join_rel_level[lev])//遍历链表         {             rel = (RelOptInfo *) lfirst(lc);//新生成的关系              /* Create paths for partitionwise joins. */             generate_partitionwise_join_paths(root, rel);//创建partitionwise路径              /*              * Except for the topmost scan/join rel, consider gathering              * partial paths.  We'll do the same for the topmost scan/join rel              * once we know the final targetlist (see grouping_planner).              */             if (lev < levels_needed)                 generate_gather_paths(root, rel, false);//并行执行需考虑gathering              /* Find and save the cheapest paths for this rel */             set_cheapest(rel);//从形成该joinrel的所有路径中找到成本最低的  #ifdef OPTIMIZER_DEBUG             debug_print_rel(root, rel);//DEBUG信息 #endif         }     }      /*      * We should have a single rel at the final level.      * 连接的最终结果,只有一个RelOptInfo      */     if (root->join_rel_level[levels_needed] == NIL)         elog(ERROR, "failed to build any %d-way joins", levels_needed);     Assert(list_length(root->join_rel_level[levels_needed]) == 1);      rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]);//获取最终结果      root->join_rel_level = NULL;//重置      return rel;//返回 }//----------------------------------------------------------------------- geqo /*  * geqo  *    solution of the query optimization problem  *    similar to a constrained Traveling Salesman Problem (TSP)  *    遗传算法:可参考TSP的求解算法.  *    TSP-旅行推销员问题(最短路径问题):  *        给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。  */  RelOptInfo * geqo(PlannerInfo *root, int number_of_rels, List *initial_rels) {     GeqoPrivateData private;     int         generation;     Chromosome *momma;     Chromosome *daddy;     Chromosome *kid;     Pool       *pool;     int         pool_size,                 number_generations;  #ifdef GEQO_DEBUG     int         status_interval; #endif     Gene       *best_tour;     RelOptInfo *best_rel;  #if defined(ERX)     Edge       *edge_table;     /* list of edges */     int         edge_failures = 0; #endif #if defined(CX) || defined(PX) || defined(OX1) || defined(OX2)     City       *city_table;     /* list of cities */ #endif #if defined(CX)     int         cycle_diffs = 0;     int         mutations = 0; #endif  /* set up private information */     root->join_search_private = (void *) &private;     private.initial_rels = initial_rels;  /* initialize private number generator */     geqo_set_seed(root, Geqo_seed);  /* set GA parameters */     pool_size = gimme_pool_size(number_of_rels);     number_generations = gimme_number_generations(pool_size); #ifdef GEQO_DEBUG     status_interval = 10; #endif  /* allocate genetic pool memory */     pool = alloc_pool(root, pool_size, number_of_rels);  /* random initialization of the pool */     random_init_pool(root, pool);  /* sort the pool according to cheapest path as fitness */     sort_pool(root, pool);      /* we have to do it only one time, since all                                  * kids replace the worst individuals in                                  * future (-> geqo_pool.c:spread_chromo ) */  #ifdef GEQO_DEBUG     elog(DEBUG1, "GEQO selected %d pool entries, best %.2f, worst %.2f",          pool_size,          pool->data[0].worth,          pool->data[pool_size - 1].worth); #endif  /* allocate chromosome momma and daddy memory */     momma = alloc_chromo(root, pool->string_length);     daddy = alloc_chromo(root, pool->string_length);  #if defined (ERX) #ifdef GEQO_DEBUG     elog(DEBUG2, "using edge recombination crossover [ERX]"); #endif /* allocate edge table memory */     edge_table = alloc_edge_table(root, pool->string_length); #elif defined(PMX) #ifdef GEQO_DEBUG     elog(DEBUG2, "using partially matched crossover [PMX]"); #endif /* allocate chromosome kid memory */     kid = alloc_chromo(root, pool->string_length); #elif defined(CX) #ifdef GEQO_DEBUG     elog(DEBUG2, "using cycle crossover [CX]"); #endif /* allocate city table memory */     kid = alloc_chromo(root, pool->string_length);     city_table = alloc_city_table(root, pool->string_length); #elif defined(PX) #ifdef GEQO_DEBUG     elog(DEBUG2, "using position crossover [PX]"); #endif /* allocate city table memory */     kid = alloc_chromo(root, pool->string_length);     city_table = alloc_city_table(root, pool->string_length); #elif defined(OX1) #ifdef GEQO_DEBUG     elog(DEBUG2, "using order crossover [OX1]"); #endif /* allocate city table memory */     kid = alloc_chromo(root, pool->string_length);     city_table = alloc_city_table(root, pool->string_length); #elif defined(OX2) #ifdef GEQO_DEBUG     elog(DEBUG2, "using order crossover [OX2]"); #endif /* allocate city table memory */     kid = alloc_chromo(root, pool->string_length);     city_table = alloc_city_table(root, pool->string_length); #endif   /* my pain main part: */ /* iterative optimization */      for (generation = 0; generation < number_generations; generation++)     {         /* SELECTION: using linear bias function */         geqo_selection(root, momma, daddy, pool, Geqo_selection_bias);  #if defined (ERX)         /* EDGE RECOMBINATION CROSSOVER */         gimme_edge_table(root, momma->string, daddy->string, pool->string_length, edge_table);          kid = momma;          /* are there any edge failures ? */         edge_failures += gimme_tour(root, edge_table, kid->string, pool->string_length); #elif defined(PMX)         /* PARTIALLY MATCHED CROSSOVER */         pmx(root, momma->string, daddy->string, kid->string, pool->string_length); #elif defined(CX)         /* CYCLE CROSSOVER */         cycle_diffs = cx(root, momma->string, daddy->string, kid->string, pool->string_length, city_table);         /* mutate the child */         if (cycle_diffs == 0)         {             mutations++;             geqo_mutation(root, kid->string, pool->string_length);         } #elif defined(PX)         /* POSITION CROSSOVER */         px(root, momma->string, daddy->string, kid->string, pool->string_length, city_table); #elif defined(OX1)         /* ORDER CROSSOVER */         ox1(root, momma->string, daddy->string, kid->string, pool->string_length, city_table); #elif defined(OX2)         /* ORDER CROSSOVER */         ox2(root, momma->string, daddy->string, kid->string, pool->string_length, city_table); #endif           /* EVALUATE FITNESS */         kid->worth = geqo_eval(root, kid->string, pool->string_length);          /* push the kid into the wilderness of life according to its worth */         spread_chromo(root, kid, pool);   #ifdef GEQO_DEBUG         if (status_interval && !(generation % status_interval))             print_gen(stdout, pool, generation); #endif      }   #if defined(ERX) && defined(GEQO_DEBUG)     if (edge_failures != 0)         elog(LOG, "[GEQO] failures: %d, average: %d",              edge_failures, (int) number_generations / edge_failures);     else         elog(LOG, "[GEQO] no edge failures detected"); #endif  #if defined(CX) && defined(GEQO_DEBUG)     if (mutations != 0)         elog(LOG, "[GEQO] mutations: %d, generations: %d",              mutations, number_generations);     else         elog(LOG, "[GEQO] no mutations processed"); #endif  #ifdef GEQO_DEBUG     print_pool(stdout, pool, 0, pool_size - 1); #endif  #ifdef GEQO_DEBUG     elog(DEBUG1, "GEQO best is %.2f after %d generations",          pool->data[0].worth, number_generations); #endif       /*      * got the cheapest query tree processed by geqo; first element of the      * population indicates the best query tree      */     best_tour = (Gene *) pool->data[0].string;      best_rel = gimme_tree(root, best_tour, pool->string_length);      if (best_rel == NULL)         elog(ERROR, "geqo failed to make a valid plan");      /* DBG: show the query plan */ #ifdef NOT_USED     print_plan(best_plan, root); #endif      /* ... free memory stuff */     free_chromo(root, momma);     free_chromo(root, daddy);  #if defined (ERX)     free_edge_table(root, edge_table); #elif defined(PMX)     free_chromo(root, kid); #elif defined(CX)     free_chromo(root, kid);     free_city_table(root, city_table); #elif defined(PX)     free_chromo(root, kid);     free_city_table(root, city_table); #elif defined(OX1)     free_chromo(root, kid);     free_city_table(root, city_table); #elif defined(OX2)     free_chromo(root, kid);     free_city_table(root, city_table); #endif      free_pool(root, pool);      /* ... clear root pointer to our private storage */     root->join_search_private = NULL;      return best_rel; }

二、跟踪分析

测试脚本以及执行计划如下:

testdb=# explain verbose select a.*,b.grbh,b.je testdb-# from t_dwxx a,testdb-#     lateral (select t1.dwbh,t1.grbh,t2.je testdb(#      from t_grxx t1 testdb(#           inner join t_jfxx t2 on t1.dwbh = a.dwbh and t1.grbh = t2.grbh) btestdb-# where a.dwbh = '1001'testdb-# order by b.dwbh;                                              QUERY PLAN                                              ------------------------------------------------------------------------------------------------------ Nested Loop  (cost=0.87..111.89 rows=10 width=37)   Output: a.dwmc, a.dwbh, a.dwdz, t1.grbh, t2.je, t1.dwbh   ->  Nested Loop  (cost=0.58..28.69 rows=10 width=29)         Output: a.dwmc, a.dwbh, a.dwdz, t1.grbh, t1.dwbh         ->  Index Scan using t_dwxx_pkey on public.t_dwxx a  (cost=0.29..8.30 rows=1 width=20)               Output: a.dwmc, a.dwbh, a.dwdz               Index Cond: ((a.dwbh)::text = '1001'::text)         ->  Index Scan using idx_t_grxx_dwbh on public.t_grxx t1  (cost=0.29..20.29 rows=10 width=9)               Output: t1.dwbh, t1.grbh, t1.xm, t1.xb, t1.nl               Index Cond: ((t1.dwbh)::text = '1001'::text)   ->  Index Scan using idx_t_jfxx_grbh on public.t_jfxx t2  (cost=0.29..8.31 rows=1 width=13)         Output: t2.grbh, t2.ny, t2.je         Index Cond: ((t2.grbh)::text = (t1.grbh)::text)

启动gdb跟踪

(gdb) b make_rel_from_joinlistBreakpoint 1 at 0x73f0d3: file allpaths.c, line 2617.(gdb) cContinuing.Breakpoint 1, make_rel_from_joinlist (root=0x176c750, joinlist=0x179e480) at allpaths.c:26172617        levels_needed = list_length(joinlist);

进入make_rel_from_joinlist函数,查看joinlist,链表中的Node为RangeTblRef,rindex分别是1/3/4

(gdb) p *joinlist$1 = {type = T_List, length = 3, head = 0x17a0448, tail = 0x17a0408}(gdb) p *(Node *)joinlist->head->data.ptr_value$2 = {type = T_RangeTblRef}(gdb) p *(RangeTblRef *)joinlist->head->data.ptr_value$3 = {type = T_RangeTblRef, rtindex = 1}(gdb) p *(RangeTblRef *)joinlist->head->next->data.ptr_value$4 = {type = T_RangeTblRef, rtindex = 3}(gdb) p *(RangeTblRef *)joinlist->head->next->next->data.ptr_value$5 = {type = T_RangeTblRef, rtindex = 4}

链表中的Node个数为3,levels_needed=3

(gdb) n2619        if (levels_needed <= 0)(gdb) p levels_needed$6 = 3

遍历链表,构造RelOptInfo,添加到initial_rels中

(gdb) 2628        foreach(jl, joinlist)...(gdb) 2637                thisrel = find_base_rel(root, varno);(gdb) 2651            initial_rels = lappend(initial_rels, thisrel);

完成遍历后,开始构造连接路径.
遗传算法的rels阈值为12(通过GUC参数配置)

2672            if (join_search_hook)(gdb) 2674            else if (enable_geqo && levels_needed >= geqo_threshold)(gdb) 2677                return standard_join_search(root, levels_needed, initial_rels);(gdb) p geqo_threshold$7 = 12

进入函数standard_join_search

(gdb) stepstandard_join_search (root=0x176c750, levels_needed=3, initial_rels=0x17a6308) at allpaths.c:27332733        root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *));

开始构造2->N个item对应的rel链表

...(gdb) 2746            join_search_one_level(root, lev);(gdb) n2757            foreach(lc, root->join_rel_level[lev])

调用函数join_search_one_level,查看root->join_rel_level[j]

(gdb) p *root->join_rel_level[2]$10 = {type = T_List, length = 2, head = 0x17a67a8, tail = 0x17a6ec0}

查看链表中的RelOptInfo

(gdb) p *(RelOptInfo *)root->join_rel_level[2]->head->data.ptr_value$12 = {type = T_RelOptInfo, reloptkind = RELOPT_JOINREL, relids = 0x17a65d0, rows = 10, consider_startup = false,   consider_param_startup = false, consider_parallel = true, reltarget = 0x17a65e8, pathlist = 0x17a68a8, ppilist = 0x0,   partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0,   cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 0, reltablespace = 0,   rtekind = RTE_JOIN, min_attr = 0, max_attr = 0, attr_needed = 0x0, attr_widths = 0x0, lateral_vars = 0x0,   lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 0, tuples = 0, allvisfrac = 0, subroot = 0x0,   subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, useridiscurrent = false, fdwroutine = 0x0,   fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0, baserestrictcost = {    startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, joininfo = 0x0, has_eclass_joins = true,   top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0, part_rels = 0x0,   partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}(gdb) p *(RelOptInfo *)root->join_rel_level[2]->head->next->data.ptr_value$13 = {type = T_RelOptInfo, reloptkind = RELOPT_JOINREL, relids = 0x17a68d8, rows = 10, consider_startup = false,   consider_param_startup = false, consider_parallel = true, reltarget = 0x17a6cd0, pathlist = 0x17a7720, ppilist = 0x0,   partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0,   cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 0, reltablespace = 0,   rtekind = RTE_JOIN, min_attr = 0, max_attr = 0, attr_needed = 0x0, attr_widths = 0x0, lateral_vars = 0x0,   lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 0, tuples = 0, allvisfrac = 0, subroot = 0x0,   subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, useridiscurrent = false, fdwroutine = 0x0,   fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0, baserestrictcost = {    startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, joininfo = 0x0, has_eclass_joins = true,   top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0, part_rels = 0x0,   partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}

查看RelOptInfo中的relids
通过relids可知,第一个RelOptInfo是1/3号rel连接生成的Relation,第二个RelOptInfo是3/4号rel连接生成的Relation

(gdb) set $roi1=(RelOptInfo *)root->join_rel_level[2]->head->data.ptr_value(gdb) set $roi2=(RelOptInfo *)root->join_rel_level[2]->head->next->data.ptr_value(gdb) p *$roi1->relids$16 = {nwords = 1, words = 0x17a65d4}(gdb) p *$roi1->relids->words$17 = 10  -->2 + 8 --> 1/3 号rel(gdb) p *$roi2->relids->words$18 = 24  -->8 + 16 --> 3/4号rel

查看第一个RelOptInfo中的pathlist,该链表有2个Node,类型均为T_NestPath(嵌套连接),总成本分别是28.69和4308.57

(gdb) p *$roi1->pathlist$19 = {type = T_List, length = 2, head = 0x17a6888, tail = 0x17a6a10}(gdb) p *(Node *)$roi1->pathlist->head->data.ptr_value$20 = {type = T_NestPath}(gdb) p *(NestPath *)$roi1->pathlist->head->data.ptr_value$21 = {path = {type = T_NestPath, pathtype = T_NestLoop, parent = 0x17a63c0, pathtarget = 0x17a65e8, param_info = 0x0,     parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 10, startup_cost = 0.57750000000000001,     total_cost = 28.688484322533327, pathkeys = 0x0}, jointype = JOIN_INNER, inner_unique = false,   outerjoinpath = 0x17a2638, innerjoinpath = 0x17a2908, joinrestrictinfo = 0x0}(gdb) p *(Node *)$roi1->pathlist->head->next->data.ptr_value$22 = {type = T_NestPath}(gdb) p *(NestPath *)$roi1->pathlist->head->next->data.ptr_value$23 = {path = {type = T_NestPath, pathtype = T_NestLoop, parent = 0x17a63c0, pathtarget = 0x17a65e8, param_info = 0x0,     parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 10, startup_cost = 0.57750000000000001,     total_cost = 4308.5748727883229, pathkeys = 0x17a3650}, jointype = JOIN_INNER, inner_unique = false,   outerjoinpath = 0x17a3190, innerjoinpath = 0x17a68f0, joinrestrictinfo = 0x0}

查看第二个RelOptInfo中的pathlist,只有1个Node,类型为T_NestPath(嵌套连接),总成本为103.49

(gdb) p *$roi2->pathlist$24 = {type = T_List, length = 1, head = 0x17a7700, tail = 0x17a7700}(gdb) p *(Node *)$roi2->pathlist->head->data.ptr_value$27 = {type = T_NestPath}(gdb) p *(NestPath *)$roi2->pathlist->head->data.ptr_value$28 = {path = {type = T_NestPath, pathtype = T_NestLoop, parent = 0x17a6ac0, pathtarget = 0x17a6cd0, param_info = 0x0,     parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 10, startup_cost = 0.58499999999999996,     total_cost = 103.48598432253331, pathkeys = 0x0}, jointype = JOIN_INNER, inner_unique = false,   outerjoinpath = 0x17a2908, innerjoinpath = 0x17a5470, joinrestrictinfo = 0x0}

通过set_cheapest函数设置成本最低的访问路径,结果存储在cheapest_startup_path和cheapest_total_path中

(gdb) 2773                set_cheapest(rel);(gdb) 2757            foreach(lc, root->join_rel_level[lev])...(gdb) p *$roi1$35 = ..., cheapest_startup_path = 0x17a67f8, cheapest_total_path = 0x17a67f8, ...(gdb) p *$roi2$36 =..., cheapest_startup_path = 0x17a7750, cheapest_total_path = 0x17a7750, ...

继续循环,这时候lev=3

(gdb) n2737        for (lev = 2; lev <= levels_needed; lev++)(gdb) n2746            join_search_one_level(root, lev);(gdb) p lev$38 = 3

得到3张表连接的final_rel

(gdb) p *root->join_rel_level[3]$41 = {type = T_List, length = 1, head = 0x17a8090, tail = 0x17a8090}(gdb) p *(RelOptInfo *)root->join_rel_level[3]->head->data.ptr_value$42 = {type = T_RelOptInfo, reloptkind = RELOPT_JOINREL, relids = 0x17a74d8, rows = 10, consider_startup = false,   consider_param_startup = false, consider_parallel = true, reltarget = 0x17a7e40, pathlist = 0x17a8258, ppilist = 0x0,   partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0,   cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 0, reltablespace = 0,   rtekind = RTE_JOIN, min_attr = 0, max_attr = 0, attr_needed = 0x0, attr_widths = 0x0, lateral_vars = 0x0,   lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 0, tuples = 0, allvisfrac = 0, subroot = 0x0,   subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, useridiscurrent = false, fdwroutine = 0x0,   fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0, baserestrictcost = {    startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, joininfo = 0x0, has_eclass_joins = false,   top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0, part_rels = 0x0,   partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}

查看pathlist,只有1个元素,类型为NestPath,该访问路径成本为111.89

(gdb) set $roi=(RelOptInfo *)root->join_rel_level[3]->head->data.ptr_value(gdb) p *$roi->pathlist$44 = {type = T_List, length = 1, head = 0x17a8238, tail = 0x17a8238}(gdb) p *(Node *)$roi->pathlist->head->data.ptr_value$45 = {type = T_NestPath}(gdb) p *(NestPath *)$roi->pathlist->head->data.ptr_value$46 = {path = {type = T_NestPath, pathtype = T_NestLoop, parent = 0x17a7c30, pathtarget = 0x17a7e40, param_info = 0x0,     parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 10, startup_cost = 0.87,     total_cost = 111.88848432253332, pathkeys = 0x0}, jointype = JOIN_INNER, inner_unique = false,   outerjoinpath = 0x17a67f8, innerjoinpath = 0x17a5470, joinrestrictinfo = 0x0}

获得最终结果

...2792        return rel;(gdb) p *rel$47 = {type = T_RelOptInfo, reloptkind = RELOPT_JOINREL, relids = 0x17a74d8, rows = 10, consider_startup = false,   consider_param_startup = false, consider_parallel = true, reltarget = 0x17a7e40, pathlist = 0x17a8258, ppilist = 0x0,   partial_pathlist = 0x0, cheapest_startup_path = 0x17a8318, cheapest_total_path = 0x17a8318, cheapest_unique_path = 0x0,   cheapest_parameterized_paths = 0x17a89b0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 0,   reltablespace = 0, rtekind = RTE_JOIN, min_attr = 0, max_attr = 0, attr_needed = 0x0, attr_widths = 0x0,   lateral_vars = 0x0, lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 0, tuples = 0, allvisfrac = 0,   subroot = 0x0, subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, useridiscurrent = false,   fdwroutine = 0x0, fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0,   baserestrictcost = {startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, joininfo = 0x0,   has_eclass_joins = false, top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0,   part_rels = 0x0, partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}(gdb) p *rel->cheapest_total_path$48 = {type = T_NestPath, pathtype = T_NestLoop, parent = 0x17a7c30, pathtarget = 0x17a7e40, param_info = 0x0,   parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 10, startup_cost = 0.87,   total_cost = 111.88848432253332, pathkeys = 0x0}

到此,关于"PostgreSQL中make_rel_from_joinlist函数分析"的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!

0