PSA算法怎么用
这篇文章主要介绍"PSA算法怎么用"的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇"PSA算法怎么用"文章能帮助大家解决问题。
为了求解优化问题,有很多生物启发算法。通过生物的某些特性来避免局部最小、加快寻优。这里要介绍的是香港理工大学(The Hong Kong Polytechnic University)的Yinyan Zhang 和 Shuai Li 提出的Porcellio scaber算法(PSA),学习的应该是中学生物书上讲的鼠妇的生存规则。
function PS_simple(number_of_PS,MaxStep)
% porcellio scaber的数量
N=number_of_PS;
%initalize a matrix to store position data
x=zeros(MaxStep,2,N);
%Generate the initial positions of all the porcellio scaber
x(1,:,:)=4*rand(2,N);
%Set weighted paramter \lambda for decion based on aggregation and the
%propensity to explore novel enviroments
lambda=0.8;
%generate a series of \tau and make each elment of \tau a zero mean
%random real number
sigma=0.001; %standard deviation
tau_data=zeros(MaxStep,2,N);
for i=1:2
for j=1:N
tau_data(:,i,j)=sigma*(2*rand(MaxStep,1)-1);
end
end
iter=1;
while iter %Get the position with the best environment condition at the current %time among the group of porcellio scaber minf=min(fun(x(iter,1,:),x(iter,2,:))); f=fun(x(iter,1,:),x(iter,2,:)); [~,indmin]=find(abs(f-minf) % x-axis coordinate of the current best position x_best_x=x(iter,1,indmin); % y-axis coordinate of the current best position x_best_y=x(iter,2,indmin); %best current position x_best=[x_best_x,x_best_y]; %Randomly choose a direction \tau to detect all_tau=tau_data(iter,:,:); %detect the best enviroment condition minEx and the worst environment %condition maxEx at position \mathbf{x}^k_i+\tau for i=1:N all N %porcellio scaber x_p_tau=zeros(1,2,N); for i=1:N %calculate \mathbf{x}^k_i+\tau x_p_tau(:,:,i)=x(iter,:,i)+all_tau(:,:,i); end Ex_p_tau=zeros(N,1); for i=1:N %calculate f(\mathbf{x}^k_i+\tau) Ex_p_tau(i)=fun(x_p_tau(:,1,i),x_p_tau(:,2,i)); end %get max{f(\mathbf{x}^k_i+\tau)} maxEx_p_tau=max(Ex_p_tau); %get min{f(\mathbf{x}^k_i+\tau)} minEx_p_tau=min(Ex_p_tau); for i=1:N x_k_i=x(iter,:,i); %Determine the difference with respect to the position to aggregate diff=x_k_i-x_best; %Determine where to explore p_tau=calculate_p_tau(i,x_k_i,maxEx_p_tau,minEx_p_tau,all_tau); %movement according to the weighted result of aggregation and the %propensity to explore novel enviroments x(iter+1,:,i)=x_k_i-(1-lambda)*diff-lambda*p_tau; end iter=iter+1; %update iteration number end display('The optimal solution is: ') x_best display('The corresopnding function value is: '); fun(x_best(1),x_best(2)) %visualization pseudoFig=figure; draw_pro; %draw the pseudo color figure of the problem hold on; %draw the tracjetory of all the procellio scaber for i=1:N data_x=x(:,1,i); data_y=x(:,2,i); plot(data_x,data_y,'k-.','LineWidth',1); hold on end saveas(pseudoFig,'ex1result','fig'); %save all the data save ALL_data save parameter_setting number_of_PS MaxStep %The following are two subfunctions %calculation of direction to explore function p_tau=calculate_p_tau(i,x_k_i,maxEx_p_tau,minEx_p_tau,all_tau) Ex_k_i_p_tau=(fun(x_k_i(1)+all_tau(1,1,i),x_k_i(2)+all_tau(1,2,i))); p_tau=(Ex_k_i_p_tau-minEx_p_tau)/(maxEx_p_tau-minEx_p_tau)*all_tau(1,:,i); end end 通过在命令行执行PS_simple(20,40);运行 找到最小值后显示
这是要求解的目标函数
function yout=fun(x,y)
yout=-sin(x).*(sin(x.^2/pi)).^20-sin(y).*(sin(2*y.^2/pi)).^20;
end
这里有一个将三维图显示在二维上的方法:以颜色深度表示本来的Z轴
[x,y]=meshgrid(linspace(0,4));
h=pcolor(x,y,fun(x,y));
set(h,'edgecolor','none','facecolor','interp');
colorbar;
关于"PSA算法怎么用"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注行业资讯频道,小编每天都会为大家更新不同的知识点。