千家信息网

C语言怎么用堆解决Topk问题

发表于:2025-01-18 作者:千家信息网编辑
千家信息网最后更新 2025年01月18日,这篇文章给大家分享的是有关C语言怎么用堆解决Topk问题的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。前言将详细讲解如何利用小根堆的方法解决TopK问题,这么多数据要处理,
千家信息网最后更新 2025年01月18日C语言怎么用堆解决Topk问题

这篇文章给大家分享的是有关C语言怎么用堆解决Topk问题的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

前言

将详细讲解如何利用小根堆的方法解决TopK问题,这么多数据要处理,

该算法时间复度居然只需

TopK问题

TopK问题介绍:在N个数中找出最大的前K个 (比如在1000个数中找出最大的前10个)

解题方法

方法1:先排降序,前N个就是最大的。

时间复杂度:

方法2:N个数依次插入大堆,HeapPop K次,每次取堆顶的数据,即为前K个。

时间复杂度:

假设N非常大,N是10亿,内存中存不下这些数,它们存在文件中的。K是100,方法1 和 方法2 就都不能用了……

话说 10 亿个整数,大概占用多少空间?

1G = 1024MB

1G = 1024*1024KB

1G = 1024*1024*1024Byte

要占用10亿字节!所以我们来看看方法3。

方法3:

① 用前个K数建立一个K个数的小堆。

② 剩下的N-K个数,依次跟堆顶的数据进行比较。如果比堆顶的数据大,就替换堆顶的数据,再向下调整。

③ 最后堆里面的K个数就是最大的K个数。

时间复杂度:

这里为什么使用小堆而不使用大堆?

最大的前K个数一定会比其他数要大,只要进来的数比堆顶数据大,就替代它。因为是小堆(小的在上大的在下),最大的数进去后一定会沉到下面,所以不可能存在大的数堵在堆顶导致某个数进不去的情况,数越大沉得越深。对应地,如果使用大堆就会出现一个大数堵在堆顶,剩下的数都比这个大数小,导致其他数进不来,最后只能选出最大的那一个。

代码实现与讲解

由于还没开始讲 C++ ,这里我们没法用优先级队列,我们得手动自己写一个堆来使用。当然,如果自己懒得写,以下是 C语言 实现堆的代码。

Heap.h

#define _CRT_SECURE_NO_WARNINGS 1#pragma once#include #include #include #include  typedef int HPDataType; typedef struct Heap {    HPDataType* array;  //指向动态开辟的数组    int size;           //有效数据的个数    int capacity;       //容量空间的大小} HP; /* 堆的初始化 */void HeapInit(HP* php); /* 堆的销毁 */void HeapDestroy(HP* php); /* 堆的打印 */void HeapPrint(HP* php); /* 判断堆是否为空 */bool HeapIfEmpty(HP* hp); /* 堆的插入 */void HeapPush(HP* php, HPDataType x);    /* 检查容量 */    void HeapCheckCapacity(HP* php);        /* 交换函数 */        void Swap(HPDataType* px, HPDataType* py);    /* 大根堆上调 */     void BigAdjustUp(int* arr, int child);    /* 小根堆上调 */     void SmallAdjustUp(int* arr, int child); /* 堆的删除 */void HeapPop(HP* php);    /* 小根堆下调*/     void SmallAdjustDown(int* arr, int n, int parent);    /* 大根堆下调 */    void BigAdjustDown(int* arr, int n, int parent); /* 返回堆顶数据*/HPDataType HeapTop(HP* php); /* 统计堆的个数 */int HeapSize(HP* php);

Heap.c

#define _CRT_SECURE_NO_WARNINGS 1#include "Heap.h" /* 堆的初始化 */void HeapInit(HP* php) {    assert(php);    php->array = NULL;    php->size = php->capacity = 0;} /* 堆的销毁 */void HeapDestroy(HP* php) {    assert(php);    free(php->array);    php->capacity = php->size = 0;} /* 堆的打印 */void HeapPrint(HP* php) {    for (int i = 0; i < php->size; i++) {        printf("%d ", php->array[i]);    }    printf("\n");} /* 判断堆是否为空 */bool HeapIfEmpty(HP* php) {    assert(php);     return php->size == 0; // 如果为size为0则表示堆为空} /* 堆的插入 */    /* 检查容量 */     void HeapCheckCapacity(HP* php) {        if (php->size == php->capacity) {            int newCapacity = php->capacity == 0 ? 4 : (php->capacity * 2); //第一次给4,其他情况扩2倍            HPDataType* tmpArray = (HPDataType*)realloc(php->array, sizeof(HPDataType) * newCapacity); // 数组扩容            if (tmpArray == NULL) {  //检查realloc                printf("realloc failed!\n");                exit(EXIT_FAILURE);            }            //更新他们的大小            php->array = tmpArray;            php->capacity = newCapacity;        }    }         /* 交换函数 */         void Swap(HPDataType* px, HPDataType* py) {            HPDataType tmp = *px;            *px = *py;            *py = tmp;        }      /* 大根堆上调 */     void BigAdjustUp(int* arr, int child) {        assert(arr);        // 首先根据公式计算算出父亲的下标        int parent = (child - 1) / 2;        // 最坏情况:调到根,child=parent 当child为根节点时结束(根节点永远是0)        while (child > 0) {            if (arr[child] > arr[parent]) {  // 如果孩子大于父亲(不符合堆的性质)                // 交换他们的值                Swap(&arr[child], &arr[parent]);                // 往上走                child = parent;                parent = (child - 1) / 2;            } else {  // 如果孩子小于父亲(符合堆的性质)            // 跳出循环                break;            }        }    }     /* 小根堆上调 */     void SmallAdjustUp(int* arr, int child) {        assert(arr);        // 首先根据公式计算算出父亲的下标        int parent = (child - 1) / 2;        // 最坏情况:调到根,child=parent 当child为根节点时结束(根节点永远是0)        while (child > 0) {            if (arr[child] < arr[parent]) {  // 如果孩子大于父亲(不符合堆的性质)                // 交换他们的值                Swap(&arr[child], &arr[parent]);                // 往上走                child = parent;                parent = (child - 1) / 2;            } else {  // 如果孩子小于父亲(符合堆的性质)            // 跳出循环                break;            }        }    }void HeapPush(HP* php, HPDataType x) {    assert(php);    // 检查是否需要扩容    HeapCheckCapacity(php);    // 插入数据    php->array[php->size] = x;    php->size++;    // 向上调整 [目标数组,调整位置的起始位置(刚插入的数据)]    SmallAdjustUp(php->array, php->size - 1);} /* 堆的删除 */     /* 小根堆下调*/     void SmallAdjustDown(int* arr, int n, int parent) {        int child = parent * 2 + 1; // 默认为左孩子        while (child < n) { // 叶子内            // 选出左右孩子中小的那一个            if (child + 1 < n && arr[child + 1] < arr[child]) {                child++;            }            if (arr[child] < arr[parent]) { // 如果孩子小于父亲(不符合小堆的性质)                // 交换它们的值                Swap(&arr[child], &arr[parent]);                // 往下走                parent = child;                child = parent * 2 + 1;            } else { // 如果孩子大于父亲(符合小堆的性质)                // 跳出循环                break;            }        }    }     /* 大根堆下调 */    void BigAdjustDown(int* arr, int n, int parent) {        int child = parent * 2 + 1; // 默认为左孩子        while (child < n) { // 叶子内            // 选出左右孩子中大的那一个            if (child + 1 < n && arr[child + 1] > arr[child]) {                child++;            }            if (arr[child] > arr[parent]) { // 如果孩子大于父亲(不符合大堆的性质)                // 交换它们的值                Swap(&arr[child], &arr[parent]);                // 往下走                parent = child;                child = parent * 2 + 1;            } else { // 如果孩子小于父亲(符合大堆的性质)                // 跳出循环                break;            }        }    }void HeapPop(HP* php) {    assert(php);    assert(!HeapIfEmpty(php));    // 删除数据    Swap(&php->array[0], &php->array[php->size - 1]);    php->size--;    // 向下调整 [目标数组,数组的大小,调整位置的起始位置]    SmallAdjustDown(php->array, php->size, 0);} /* 返回堆顶数据 */HPDataType HeapTop(HP* php) {    assert(php);    assert(!HeapIfEmpty(php));     return php->array[0];} /* 统计堆的个数 */int HeapSize(HP* php) {    assert(php);     return php->size;}

第三种方法的参考代码:

#define _CRT_SECURE_NO_WARNINGS 1#include "Heap.h" /* 在N个数中找出最大的前K个 */void PrintTopK(int* arr, int N, int K) {     HP hp;                             // 创建堆    HeapInit(&hp);                     // 初始化堆     for (int i = 0; i < K; i++) {      // Step1: 创建一个K个数的小堆        HeapPush(&hp, arr[i]);    }     for (int i = K; i < N; i++) {      // Step2: 剩下的N-K个数跟堆顶的数据比较        if (arr[i] > HeapTop(&hp)) {   // 如果比堆顶的数据大就替换进堆            HeapPop(&hp);              // 此数确实比堆顶大,删除堆顶            HeapPush(&hp, arr[i]);     // 将此数推进堆中,数越大下沉越深            /* 另一种写法: 手动替换            hp.array[0] = arr[i];            SmallAdjustDown(hp.array, hp.size, 0);            */        }    }    HeapPrint(&hp);                    // 打印K个数的堆    HeapDestroy(&hp);                  // 销毁堆} /* 模拟测试 TopK */void TestTopK() {    int N = 1000000;    int* arr = (int*)malloc(sizeof(int) * N);     srand(time(0)); // 置随机数种子    for(size_t i = 0; i < N; i++) {        // 产生随机数,每次产生的随机数都mod100w,这样产生的数一定是小于100w的        arr[i] = rand() % 1000000;     }        // 再去设置10个比100w大的数    arr[5] = 1000000 + 1;        arr[1231] = 1000000 + 2;        arr[5355] = 1000000 + 3;        arr[51] = 1000000 + 4;        arr[15] = 1000000 + 5;        arr[2335] = 1000000 + 6;        arr[9999] = 1000000 + 7;        arr[76] = 1000000 + 8;        arr[423] = 1000000 + 9;        arr[3144] = 1000000 + 10;     PrintTopK(arr, N, 10); //测试用,所以给10个} int main(void) {    TestTopK();         return 0;}

运行结果

函数解读

PrintTopK 解读

① 准备好我们实现好的堆之后,我们就可以写TopK的算法了。我们创建一个 PrintTopK 函数,函数需要接收存放数据的数组、数组的大小(N)和要找前多少个(K)。

② 首先创建一个堆,用来存放K 。按照规矩我们先把 HeapInit(初始化)和 HeapDestroy(销毁)先写好,防止自己不小心忘记销毁。

③ 核心步骤1:创建一个K个数的小堆,我们直接用 for 循环将数组中前K个值先逐个 HeapPush (堆的插入)进去。

这里不代表最后的结果,我们只是相当于 "默认" 认为这前K个数是最大的,方便我们后续进行比较替代。经过 HeapPush (堆的插入)后,这些数据会通过 SmallAdjustDown (小堆下调接口) 对数据进行相应的调整:

for (int i = 0; i < K; i++) {      // Step1: 创建一个K个数的小堆    HeapPush(&hp, arr[i]);}

④ 核心步骤2:除去K,将剩下的N-K个数据进行比较。我们再利用 for 循环将数组中剩下的N-K个数据进行遍历。

这里逐个进行判断,如果该数堆顶的数据 i<K(max),我们就进行替换操作。调用 HeapPop(堆的删除)删除堆顶的数据,给 让位。之后将其 HeapPush (堆的插入)推到堆中,就完成了替换的工作。值得一提的是,我们还可以不调用 Pop 和 Push 这两个操作,手动进行替换。hp.array [ 0 ] 就表示栈顶,我们将 赋值给它,随后再手动进行 SmallAdjustDown (小堆下调操作),传入相应的值即可:

for (int i = K; i < N; i++) {      // Step2: 剩下的N-K个数跟堆顶的数据比较    if (arr[i] > HeapTop(&hp)) {   // 如果比堆顶的数据大就替换进堆        HeapPop(&hp);              // 此数确实比堆顶大,删除堆顶        HeapPush(&hp, arr[i]);     // 将此数推进堆中,数越大下沉越深        /* 另一种写法: 手动替换        hp.array[0] = arr[i];        SmallAdjustDown(hp.array, hp.size, 0);        */    }}

⑤ 当 for 遍历完所有数据之后,小堆中就保留了N个数据中最大的前K个数了。此时我们调用堆打印接口将小堆里的数据打印出来就大功告成了。

TestTopK 解读

① 这是用来测试我们写的TopK算法的函数。设置 N 的大小为 100w,动态内存开辟一块可以存下这么多数据的空间:

int N = 1000000;int* arr = (int*)malloc(sizeof(int) * N);

② 随后根据时间来置随机数种子,将每个元素都进行随机数的填充,每次产生的随机数都模上100w,这样可以保证产生的随机数一定是小于100w的。

srand(time(0));for(size_t i = 0; i < N; i++) {    arr[i] = rand() % 1000000; }

③ 随便写几个大于100w的数,便于测试:

// 再去设置10个比100w大的数arr[5] = 1000000 + 1;arr[1231] = 1000000 + 2;arr[5355] = 1000000 + 3;arr[51] = 1000000 + 4;arr[15] = 1000000 + 5;arr[2335] = 1000000 + 6;    arr[9999] = 1000000 + 7;    arr[76] = 1000000 + 8;arr[423] = 1000000 + 9;arr[3144] = 1000000 + 10;

④ 调用我们刚才实现好的 PrintTopK 函数,递交对应的参数后就可以进行测试了。这里为了方便测试,我们的K设置为10:

PrintTopK(arr, N, 10);

感谢各位的阅读!关于"C语言怎么用堆解决Topk问题"这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

0