使用Java实现5种负载均衡算法的方法教程
本篇内容介绍了"使用Java实现5种负载均衡算法的方法教程"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
目录
前言
概念
几种负载均衡算法图例
轮询算法
加权轮询法
加权随机法
随机法
IP_Hash算法
总结
前言
负载均衡是为了解决并发情况下,多个请求访问,把请求通过提前约定好的规则转发给各个server。其中有好几个种经典的算法。在用java代码编写这几种算法之前,先来了解一下负载均衡这个概念。
概念
负载均衡是将客户端请求访问,通过提前约定好的规则转发给各个server。其中有好几个种经典的算法,下面我们用Java实现这几种算法。
几种负载均衡算法图例
主要的负载均衡算法是图中这些,在代码实现之前,我们先简单回顾一下他们的概念。
轮询算法
轮询算法按顺序把每个新的连接请求分配给下一个服务器,最终把所有请求平分给所有的服务器。
优点:绝对公平
缺点:无法根据服务器性能去分配,无法合理利用服务器资源。
package com.monkeyjava.learn.basic.robin;import com.google.common.collect.Lists;import java.util.HashMap;import java.util.List;import java.util.Map;public class TestRound { private Integer index = 0; private Listips = Lists.newArrayList("192.168.1.1", "192.168.1.2", "192.168.1.3"); public String roundRobin(){ String serverIp; synchronized(index){ if (index >= ips.size()){ index = 0; } serverIp= ips.get(index); //轮询+1 index ++; } return serverIp; } public static void main(String[] args) { TestRound testRoundRobin =new TestRound(); for (int i=0;i< 10 ;i++){ String serverIp= testRoundRobin.roundRobin(); System.out.println(serverIp); } }}
输出结果:
192.168.1.1
192.168.1.2
192.168.1.3
192.168.1.1
192.168.1.2
192.168.1.3
192.168.1.1
192.168.1.2
192.168.1.3
192.168.1.1
加权轮询法
该算法中,每个机器接受的连接数量是按权重比例分配的。这是对普通轮询算法的改进,比如你可以设定:第三台机器的处理能力是第一台机器的两倍,那么负载均衡器会把两倍的连接数量分配给第3台机器,轮询可以将请求顺序按照权重分配到后端。
package com.monkeyjava.learn.basic.robin;import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;public class TestWeight { private Integer index = 0; static MapipMap=new HashMap (16); static { // 1.map, key-ip,value-权重 ipMap.put("192.168.1.1", 1); ipMap.put("192.168.1.2", 2); ipMap.put("192.168.1.3", 4); } public List getServerIpByWeight() { List ips = new ArrayList (32); for (Map.Entry entry : ipMap.entrySet()) { String ip = entry.getKey(); Integer weight = entry.getValue(); // 根据权重不同,放入list 中的数量等同于权重,轮询出的的次数等同于权重 for (int ipCount =0; ipCount < weight; ipCount++) { ips.add(ip); } } return ips; } public String weightRobin(){ List ips = this.getServerIpByWeight(); if (index >= ips.size()){ index = 0; } String serverIp= ips.get(index); index ++; return serverIp; } public static void main(String[] args) { TestWeight testWeightRobin=new TestWeight(); for (int i =0;i< 10 ;i++){ String server=testWeightRobin.weightRobin(); System.out.println(server); } }}
输出结果:
192.168.1.1
192.168.1.3
192.168.1.3
192.168.1.3
192.168.1.3
192.168.1.2
192.168.1.2
192.168.1.1
192.168.1.3
192.168.1.3
加权随机法
获取带有权重的随机数字,随机这种东西,不能看绝对,只能看相对,我们不用index 控制下标进行轮询,只用random 进行随机取ip,即实现算法。
package com.monkeyjava.learn.basic.robin;import java.util.*;public class TestRandomWeight { static MapipMap=new HashMap (16); static { // 1.map, key-ip,value-权重 ipMap.put("192.168.1.1", 1); ipMap.put("192.168.1.2", 2); ipMap.put("192.168.1.3", 4); } public List getServerIpByWeight() { List ips = new ArrayList (32); for (Map.Entry entry : ipMap.entrySet()) { String ip = entry.getKey(); Integer weight = entry.getValue(); // 根据权重不同,放入list 中的数量等同于权重,轮询出的的次数等同于权重 for (int ipCount =0; ipCount < weight; ipCount++) { ips.add(ip); } } return ips; } public String randomWeightRobin(){ List ips = this.getServerIpByWeight(); //循环随机数 Random random=new Random(); int index =random.nextInt(ips.size()); String serverIp = ips.get(index); return serverIp; } public static void main(String[] args) { TestRandomWeight testRandomWeightRobin=new TestRandomWeight(); for (int i =0;i< 10 ;i++){ String server= testRandomWeightRobin.randomWeightRobin(); System.out.println(server); } }}
输出结果:
192.168.1.3
192.168.1.3
192.168.1.2
192.168.1.1
192.168.1.2
192.168.1.1
192.168.1.3
192.168.1.2
192.168.1.2
192.168.1.3
随机法
负载均衡方法随机的把负载分配到各个可用的服务器上,通过随机数生成算法选取一个服务器,这种实现算法最简单,随之调用次数增大,这种算法可以达到每台服务器的请求量接近于平均。
package com.monkeyjava.learn.basic.robin;import com.google.common.collect.Lists;import java.util.List;import java.util.Random;public class TestRandom { private Listips = Lists.newArrayList("192.168.1.1", "192.168.1.2", "192.168.1.3"); public String randomRobin(){ //随机数 Random random=new Random(); int index =random.nextInt(ips.size()); String serverIp= ips.get(index); return serverIp; } public static void main(String[] args) { TestRandom testRandomdRobin =new TestRandom(); for (int i=0;i< 10 ;i++){ String serverIp= testRandomdRobin.randomRobin(); System.out.println(serverIp); } }}
输出
192.168.1.3
192.168.1.3
192.168.1.1
192.168.1.2
192.168.1.1
192.168.1.3
192.168.1.2
192.168.1.3
192.168.1.3
192.168.1.2
IP_Hash算法
hash(ip)%N算法,通过一种散列算法把客户端来源IP根据散列取模算法将请求分配到不同的服务器上
优点:保证了相同客户端IP地址将会被哈希到同一台后端服务器,直到后端服务器列表变更。根据此特性可以在服务消费者与服务提供者之间建立有状态的session会话
缺点: 如果服务器进行了下线操作,源IP路由的服务器IP就会变成另外一台,如果服务器没有做session 共享话,会造成session丢失。
package com.monkeyjava.learn.basic.robin;import com.google.common.collect.Lists;import java.util.List;public class TestIpHash { private Listips = Lists.newArrayList("192.168.1.1", "192.168.1.2", "192.168.1.3"); public String ipHashRobin(String clientIp){ int hashCode=clientIp.hashCode(); int serverListsize=ips.size(); int index = hashCode%serverListsize; String serverIp= ips.get(index); return serverIp; } public static void main(String[] args) { TestIpHash testIpHash =new TestIpHash(); String servername= testIpHash.ipHashRobin("192.168.88.2"); System.out.println(servername); }}
输出结果
192.168.1.3
每次运行结果都一样
"使用Java实现5种负载均衡算法的方法教程"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!