PyTorch怎么设置随机种子
发表于:2024-11-18 作者:千家信息网编辑
千家信息网最后更新 2024年11月18日,本篇内容介绍了"PyTorch怎么设置随机种子"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!impo
千家信息网最后更新 2024年11月18日PyTorch怎么设置随机种子
本篇内容介绍了"PyTorch怎么设置随机种子"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
import torchimport torch.nn as nnimport matplotlib.pyplot as pltfrom tools import set_seedfrom torch.utils.tensorboard import SummaryWriterset_seed(1) # 设置随机种子n_hidden = 200max_iter = 2000disp_interval = 200lr_init = 0.01def gen_data(num_data=10, x_range=(-1, 1)): w = 1.5 train_x = torch.linspace(*x_range, num_data).unsqueeze_(1) train_y = w*train_x + torch.normal(0, 0.5, size=train_x.size()) test_x = torch.linspace(*x_range, num_data).unsqueeze_(1) test_y = w*test_x + torch.normal(0, 0.3, size=test_x.size()) return train_x, train_y, test_x, test_ytrain_x, train_y, test_x, test_y = gen_data(num_data=10, x_range=(-1, 1))class MLP(nn.Module): def __init__(self, neural_num): super(MLP, self).__init__() self.linears = nn.Sequential( nn.Linear(1, neural_num), nn.ReLU(inplace=True), nn.Linear(neural_num, neural_num), nn.ReLU(inplace=True), nn.Linear(neural_num, neural_num), nn.ReLU(inplace=True), nn.Linear(neural_num, 1), ) def forward(self, x): return self.linears(x)net_n = MLP(neural_num=n_hidden)net_weight_decay = MLP(neural_num=n_hidden)optim_n = torch.optim.SGD(net_n.parameters(), lr=lr_init, momentum=0.9)optim_wdecay = torch.optim.SGD(net_weight_decay.parameters(), lr=lr_init, momentum=0.9, weight_decay=1e-2)loss_fun = torch.nn.MSELoss() #均方损失writer = SummaryWriter(comment='test', filename_suffix='test')for epoch in range(max_iter): pred_normal, pred_wdecay = net_n(train_x), net_weight_decay(train_x) loss_n, loss_wdecay = loss_fun(pred_normal, train_y), loss_fun(pred_wdecay, train_y) optim_n.zero_grad() optim_wdecay.zero_grad() loss_n.backward() loss_wdecay.backward() optim_n.step() #参数更新 optim_wdecay.step() if (epoch + 1) % disp_interval == 0: for name, layer in net_n.named_parameters(): ## writer.add_histogram(name + '_grad_normal', layer.grad, epoch) writer.add_histogram(name + '_data_normal', layer, epoch) for name, layer in net_weight_decay.named_parameters(): writer.add_histogram(name + '_grad_weight_decay', layer.grad, epoch) writer.add_histogram(name + '_data_weight_decay', layer, epoch) test_pred_normal, test_pred_wdecay = net_n(test_x), net_weight_decay(test_x) plt.scatter(train_x.data.numpy(), train_y.data.numpy(), c='blue', s=50, alpha=0.3, label='trainc') plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='red', s=50, alpha=0.3, label='test') plt.plot(test_x.data.numpy(), test_pred_normal.data.numpy(), 'r-', lw=3, label='no weight decay') plt.plot(test_x.data.numpy(), test_pred_wdecay.data.numpy(), 'b--', lw=3, label='weight decay') plt.text(-0.25, -1.5, 'no weight decay loss={:.6f}'.format(loss_n.item()), fontdict={'size': 15, 'color': 'red'}) plt.text(-0.25, -2, 'weight decay loss={:.6f}'.format(loss_wdecay.item()), fontdict={'size': 15, 'color': 'red'}) plt.ylim(-2.5, 2.5) plt.legend() plt.title('Epoch: {}'.format(epoch + 1)) plt.show() plt.close()
作业
1. weight decay在pytorch的SGD中实现代码是哪一行?它对应的数学公式为?
2. PyTorch中,Dropout在训练的时候权值尺度会进行什么操作?
1. weight decay
optim_wdecay = torch.optim.SGD(net_weight_decay.parameters(), lr=lr_init, momentum=0.9, weight_decay=1e-2)optim_wdecay.step()
2. dropout期望
Dropout随机失活,隐藏单元以一定概率被丢弃,以1-p的概率除以1-p做拉伸,即输出单元的计算不依赖于丢弃的隐藏层单元
"PyTorch怎么设置随机种子"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!
种子
单元
内容
更多
概率
知识
输出
实用
学有所成
接下来
一行
代码
公式
参数
困境
实际
尺度
情况
损失
数学
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
百兆猫网线连接服务器不识别网络
数据库空间如何释放
安全盾服务器防火墙破解版
福州网络安全相关培训要怎么学
云存储服务器耗电量
db2展示所有数据库
网络安全法开始拖延时间
三星服务器内存标签参数详解
异次元软件开发公司
8438网络安全技术
电子商务网络安全重要性
计算机网络技术插本考什么
结合课本对网络安全的认识
网络技术综合实验总结
云服务器读写数据库信息
安徽软件开发制作
软件开发思维导图例子
考公务员网络安全
e3-1275服务器
3台电脑设置服务器
计算机软件开发设计百度百科
厦门网络安全周法制日
vps做离线下载服务器
武汉设备软件开发公司
南方互联网络科技有限公司
云桌面经常无法连接到服务器
点击取消已关闭服务器管理器
软件开发基线是什么意思
服务器传输数据也需要遵循协议吗
密云区正规软件开发价目表