千家信息网

Kubernetes HPA Controller怎么使用

发表于:2025-02-04 作者:千家信息网编辑
千家信息网最后更新 2025年02月04日,这篇文章主要讲解了"Kubernetes HPA Controller怎么使用",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Kubernetes HP
千家信息网最后更新 2025年02月04日Kubernetes HPA Controller怎么使用

这篇文章主要讲解了"Kubernetes HPA Controller怎么使用",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Kubernetes HPA Controller怎么使用"吧!

源码目录结构分析

HorizontalPodAutoscaler(以下简称HPA)的主要代码如下,主要涉及的文件不多。

cmd/kube-controller-manager/app/autoscaling.go    // HPA Controller的启动代码/pkg/controller/podautoscaler.├── BUILD├── OWNERS├── doc.go├── horizontal.go    // podautoscaler的核心代码,包括其创建和运行的代码├── horizontal_test.go├── metrics│   ├── BUILD│   ├── metrics_client.go│   ├── metrics_client_test.go│   ├── metrics_client_test.go.orig│   ├── metrics_client_test.go.rej│   └── utilization.go├── replica_calculator.go   // ReplicaCaculator的创建,以及根据cpu/metrics计算replicas的方法└── replica_calculator_test.go

其中,horizontal.go和replica_calculator.go是最核心的文件,他们对应的Structure如下:

  • horizontal.go

  • replica_calculator.go

源码分析

HPA Controller同其他Controller一样,都是在kube-controller-manager启动时完成初始化并启动的,如下代码所示。

cmd/kube-controller-manager/app/controllermanager.go:224func newControllerInitializers() map[string]InitFunc {        controllers := map[string]InitFunc{}                ...                controllers["horizontalpodautoscaling"] = startHPAController                ...        return controllers}

kube-controller-manager启动时会initial一堆的controllers,对于HPA controller,它的启动就交给startHPAController了。

cmd/kube-controller-manager/app/autoscaling.go:29func startHPAController(ctx ControllerContext) (bool, error) {                ...                // HPA Controller需要集群已经部署Heapster,由Heapster提供监控数据,来进行replicas的计算。        metricsClient := metrics.NewHeapsterMetricsClient(                hpaClient,                metrics.DefaultHeapsterNamespace,                metrics.DefaultHeapsterScheme,                metrics.DefaultHeapsterService,                metrics.DefaultHeapsterPort,        )                // 创建ReplicaCaculator,后面会用它来计算desired replicas。        replicaCalc := podautoscaler.NewReplicaCalculator(metricsClient, hpaClient.Core())                // 创建HPA Controller,并启动goroutine执行其Run方法,开始工作。        go podautoscaler.NewHorizontalController(                hpaClient.Core(),                hpaClient.Extensions(),                hpaClient.Autoscaling(),                replicaCalc,                ctx.Options.HorizontalPodAutoscalerSyncPeriod.Duration,        ).Run(ctx.Stop)                return true, nil}

首先我们来看看NewHorizontalController创建HPA Controller的代码。

pkg/controller/podautoscaler/horizontal.go:112func NewHorizontalController(evtNamespacer v1core.EventsGetter, scaleNamespacer unversionedextensions.ScalesGetter, hpaNamespacer unversionedautoscaling.HorizontalPodAutoscalersGetter, replicaCalc *ReplicaCalculator, resyncPeriod time.Duration) *HorizontalController {                ...        // 构建HPA Controller        controller := &HorizontalController{                replicaCalc:     replicaCalc,                eventRecorder:   recorder,                scaleNamespacer: scaleNamespacer,                hpaNamespacer:   hpaNamespacer,        }                // 创建Informer,配置对应的ListWatch Func,及其对应的EventHandler,用来监控HPA Resource的Add和Update事件。newInformer是HPA的核心代码入口。        store, frameworkController := newInformer(controller, resyncPeriod)        controller.store = store        controller.controller = frameworkController        return controller}

我们有必要来看看HPA Controller struct的定义:

pkg/controller/podautoscaler/horizontal.go:59type HorizontalController struct {        scaleNamespacer unversionedextensions.ScalesGetter        hpaNamespacer   unversionedautoscaling.HorizontalPodAutoscalersGetter        replicaCalc   *ReplicaCalculator        eventRecorder record.EventRecorder        // A store of HPA objects, populated by the controller.        store cache.Store        // Watches changes to all HPA objects.        controller *cache.Controller}
  • scaleNamespacer其实是一个ScaleInterface,包括Scale subresource的Get和Update接口。

  • hpaNamespacer是HorizontalPodAutoscalerInterface,包括HorizontalPodAutoscaler的Create, Update, UpdateStatus, Delete, Get, List, Watch等接口。

  • replicaCalc根据Heapster提供的监控数据,计算对应desired replicas。

            pkg/controller/podautoscaler/replica_calculator.go:31        type ReplicaCalculator struct {                metricsClient metricsclient.MetricsClient                podsGetter    v1core.PodsGetter        }


  • store和controller:controller用来watch HPA objects,并更新到store这个cache中。

上面提到了Scale subresource,那是个什么东西?好吧,我们得看看Scale的定义。

pkg/apis/extensions/v1beta1/types.go:56// represents a scaling request for a resource.type Scale struct {        metav1.TypeMeta `json:",inline"`        // Standard object metadata; More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#metadata.        // +optional        v1.ObjectMeta `json:"metadata,omitempty" protobuf:"bytes,1,opt,name=metadata"`        // defines the behavior of the scale. More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#spec-and-status.        // +optional        Spec ScaleSpec `json:"spec,omitempty" protobuf:"bytes,2,opt,name=spec"`        // current status of the scale. More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#spec-and-status. Read-only.        // +optional        Status ScaleStatus `json:"status,omitempty" protobuf:"bytes,3,opt,name=status"`}// describes the attributes of a scale subresourcetype ScaleSpec struct {        // desired number of instances for the scaled object.        Replicas int `json:"replicas,omitempty"`}// represents the current status of a scale subresource.type ScaleStatus struct {        // actual number of observed instances of the scaled object.        Replicas int `json:"replicas"`        // label query over pods that should match the replicas count.        Selector map[string]string `json:"selector,omitempty"`}
  • Scale struct作为一次scale动作的请求数据。

  • 其中Spec定义的是desired replicas number。

  • ScaleStatus定义了current replicas number。

看完了HorizontalController的结构后,接着看看NewHorizontalController中调用的newInformer。在上面的注释中,我提到newInformer是整个HPA的核心代码入口。

pkg/controller/podautoscaler/horizontal.go:75func newInformer(controller *HorizontalController, resyncPeriod time.Duration) (cache.Store, *cache.Controller) {        return cache.NewInformer(                        // 配置ListFucn和WatchFunc,用来定期List和watch HPA resource。                &cache.ListWatch{                        ListFunc: func(options v1.ListOptions) (runtime.Object, error) {                                return controller.hpaNamespacer.HorizontalPodAutoscalers(v1.NamespaceAll).List(options)                        },                        WatchFunc: func(options v1.ListOptions) (watch.Interface, error) {                                return controller.hpaNamespacer.HorizontalPodAutoscalers(v1.NamespaceAll).Watch(options)                        },                },                                // 定义期望收到的object为HorizontalPodAutoscaler                &autoscaling.HorizontalPodAutoscaler{},                                // 定义定期List的周期                resyncPeriod,                                // 配置HPA resource event的Handler(AddFunc, UpdateFunc)                cache.ResourceEventHandlerFuncs{                        AddFunc: func(obj interface{}) {                                hpa := obj.(*autoscaling.HorizontalPodAutoscaler)                                hasCPUPolicy := hpa.Spec.TargetCPUUtilizationPercentage != nil                                _, hasCustomMetricsPolicy := hpa.Annotations[HpaCustomMetricsTargetAnnotationName]                                if !hasCPUPolicy && !hasCustomMetricsPolicy {                                        controller.eventRecorder.Event(hpa, v1.EventTypeNormal, "DefaultPolicy", "No scaling policy specified - will use default one. See documentation for details")                                }                                                                // 根据监控调整hpa的数据                                err := controller.reconcileAutoscaler(hpa)                                if err != nil {                                        glog.Warningf("Failed to reconcile %s: %v", hpa.Name, err)                                }                        },                        UpdateFunc: func(old, cur interface{}) {                                hpa := cur.(*autoscaling.HorizontalPodAutoscaler)                                                                // 根据监控调整hpa的数据                                err := controller.reconcileAutoscaler(hpa)                                if err != nil {                                        glog.Warningf("Failed to reconcile %s: %v", hpa.Name, err)                                }                        },                        // We are not interested in deletions.                },        )}

newInformer的代码也不长嘛,简单说来,就是配置了HPA resource的ListWatch的Func,注册HPA resource 的Add和Update Event的handler Func。

最终通过调用reconcileAutoscaler来矫正hpa的数据。

上面代码中,将HPA resource的ListWatch Func注册为HorizontalPodAutoscaler Interface定义的List和Watch接口。

等等,说了这么多,怎么还没看到HorizontalPodAutoscaler struct的定义呢!好吧,下面就来看看,正好HorizontalPodAutoscaler Interface中出现了。

pkg/apis/autoscaling/v1/types.go:76// configuration of a horizontal pod autoscaler.type HorizontalPodAutoscaler struct {        metav1.TypeMeta `json:",inline"`        // Standard object metadata. More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#metadata        // +optional        v1.ObjectMeta `json:"metadata,omitempty" protobuf:"bytes,1,opt,name=metadata"`        // behaviour of autoscaler. More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#spec-and-status.        // +optional        Spec HorizontalPodAutoscalerSpec `json:"spec,omitempty" protobuf:"bytes,2,opt,name=spec"`        // current information about the autoscaler.        // +optional        Status HorizontalPodAutoscalerStatus `json:"status,omitempty" protobuf:"bytes,3,opt,name=status"`}
  • Spec HorizontalPodAutoscalerSpec存的是hpa的描述信息,是可以通过kube-controller-manager配置对应flag的信息。包括最小副本数MinReplicas,最大副本数MaxReplicas,hpa对应的所有pods的平均的百分比形式的目标CPU利用率TargetCPUUtilizationPercentage。

           pkg/apis/autoscaling/v1/types.go:36        // specification of a horizontal pod autoscaler.        type HorizontalPodAutoscalerSpec struct {                // reference to scaled resource; horizontal pod autoscaler will learn the current resource consumption                // and will set the desired number of pods by using its Scale subresource.                ScaleTargetRef CrossVersionObjectReference `json:"scaleTargetRef" protobuf:"bytes,1,opt,name=scaleTargetRef"`                // lower limit for the number of pods that can be set by the autoscaler, default 1.                // +optional                MinReplicas *int32 `json:"minReplicas,omitempty" protobuf:"varint,2,opt,name=minReplicas"`                // upper limit for the number of pods that can be set by the autoscaler; cannot be smaller than MinReplicas.                MaxReplicas int32 `json:"maxReplicas" protobuf:"varint,3,opt,name=maxReplicas"`                // target average CPU utilization (represented as a percentage of requested CPU) over all the pods;                // if not specified the default autoscaling policy will be used.                // +optional                TargetCPUUtilizationPercentage *int32 `json:"targetCPUUtilizationPercentage,omitempty" protobuf:"varint,4,opt,name=targetCPUUtilizationPercentage"`        }


  • Status HorizontalPodAutoscalerStatu存的是HPA的当前状态数据,包括前后两次scale的时间间隔ObservedGeneration,上一次scale的时间戳LastScaleTime,当前副本数CurrentReplicas,期望副本数DesiredReplicas,hpa对应的所有pods的平均的百分比形式的当前CPU利用率。

        pkg/apis/autoscaling/v1/types.go:52        // current status of a horizontal pod autoscaler        type HorizontalPodAutoscalerStatus struct {                // most recent generation observed by this autoscaler.                // +optional                ObservedGeneration *int64 `json:"observedGeneration,omitempty" protobuf:"varint,1,opt,name=observedGeneration"`                // last time the HorizontalPodAutoscaler scaled the number of pods;                // used by the autoscaler to control how often the number of pods is changed.                // +optional                LastScaleTime *metav1.Time `json:"lastScaleTime,omitempty" protobuf:"bytes,2,opt,name=lastScaleTime"`                // current number of replicas of pods managed by this autoscaler.                CurrentReplicas int32 `json:"currentReplicas" protobuf:"varint,3,opt,name=currentReplicas"`                // desired number of replicas of pods managed by this autoscaler.                DesiredReplicas int32 `json:"desiredReplicas" protobuf:"varint,4,opt,name=desiredReplicas"`                // current average CPU utilization over all pods, represented as a percentage of requested CPU,                // e.g. 70 means that an average pod is using now 70% of its requested CPU.                // +optional                CurrentCPUUtilizationPercentage *int32 `json:"currentCPUUtilizationPercentage,omitempty" protobuf:"varint,5,opt,name=currentCPUUtilizationPercentage"`        }


newInformer的代码可见,不管hpa resource的event为Add或者update,最终都是调用reconcileAutoscaler来触发HorizontalPodAutoscaler数据的更新。

pkg/controller/podautoscaler/horizontal.go:272func (a *HorizontalController) reconcileAutoscaler(hpa *autoscaling.HorizontalPodAutoscaler) error {        ...        // 获取对应resource的scale subresource数据。        scale, err := a.scaleNamespacer.Scales(hpa.Namespace).Get(hpa.Spec.ScaleTargetRef.Kind, hpa.Spec.ScaleTargetRef.Name)                ...                // 得到当前副本数        currentReplicas := scale.Status.Replicas        cpuDesiredReplicas := int32(0)        cpuCurrentUtilization := new(int32)        cpuTimestamp := time.Time{}        cmDesiredReplicas := int32(0)        cmMetric := ""        cmStatus := ""        cmTimestamp := time.Time{}        desiredReplicas := int32(0)        rescaleReason := ""        timestamp := time.Now()        rescale := true        // 如果期望副本数为0,这不进行scale操作。        if scale.Spec.Replicas == 0 {                // Autoscaling is disabled for this resource                desiredReplicas = 0                rescale = false        }                 // 期望副本数不能超过hpa中配置的最大副本数        else if currentReplicas > hpa.Spec.MaxReplicas {                rescaleReason = "Current number of replicas above Spec.MaxReplicas"                desiredReplicas = hpa.Spec.MaxReplicas        }                 // 期望副本数不能低于配置的最小副本数        else if hpa.Spec.MinReplicas != nil && currentReplicas < *hpa.Spec.MinReplicas {                rescaleReason = "Current number of replicas below Spec.MinReplicas"                desiredReplicas = *hpa.Spec.MinReplicas        }                 // 期望副本数最少为1        else if currentReplicas == 0 {                rescaleReason = "Current number of replicas must be greater than 0"                desiredReplicas = 1        }         // 如果当前副本数在Min和Max之间,则需要根据cpu或者custom metrics(如果加了对应的Annotation)数据进行算法计算得到期望副本数。        else {                // All basic scenarios covered, the state should be sane, lets use metrics.                cmAnnotation, cmAnnotationFound := hpa.Annotations[HpaCustomMetricsTargetAnnotationName]                if hpa.Spec.TargetCPUUtilizationPercentage != nil || !cmAnnotationFound {                                        // 根据cpu利用率计算期望副本数                        cpuDesiredReplicas, cpuCurrentUtilization, cpuTimestamp, err = a.computeReplicasForCPUUtilization(hpa, scale)                        if err != nil {                                                        // 更新hpa的当前副本数                                a.updateCurrentReplicasInStatus(hpa, currentReplicas)                                return fmt.Errorf("failed to compute desired number of replicas based on CPU utilization for %s: %v", reference, err)                        }                }                if cmAnnotationFound {                                        // 根据custom metrics数据计算期望副本数                        cmDesiredReplicas, cmMetric, cmStatus, cmTimestamp, err = a.computeReplicasForCustomMetrics(hpa, scale, cmAnnotation)                        if err != nil {                                                        // 更新hpa的当前副本数                                a.updateCurrentReplicasInStatus(hpa, currentReplicas)                                return fmt.Errorf("failed to compute desired number of replicas based on Custom Metrics for %s: %v", reference, err)                        }                }                // 取cpu和custom metric得到的期望副本数的最大值作为最终的desired replicas,并且要在min和max范围内。                rescaleMetric := ""                if cpuDesiredReplicas > desiredReplicas {                        desiredReplicas = cpuDesiredReplicas                        timestamp = cpuTimestamp                        rescaleMetric = "CPU utilization"                }                if cmDesiredReplicas > desiredReplicas {                        desiredReplicas = cmDesiredReplicas                        timestamp = cmTimestamp                        rescaleMetric = cmMetric                }                if desiredReplicas > currentReplicas {                        rescaleReason = fmt.Sprintf("%s above target", rescaleMetric)                }                if desiredReplicas < currentReplicas {                        rescaleReason = "All metrics below target"                }                if hpa.Spec.MinReplicas != nil && desiredReplicas < *hpa.Spec.MinReplicas {                        desiredReplicas = *hpa.Spec.MinReplicas                }                //  never scale down to 0, reserved for disabling autoscaling                if desiredReplicas == 0 {                        desiredReplicas = 1                }                if desiredReplicas > hpa.Spec.MaxReplicas {                        desiredReplicas = hpa.Spec.MaxReplicas                }                // Do not upscale too much to prevent incorrect rapid increase of the number of master replicas caused by                // bogus CPU usage report from heapster/kubelet (like in issue #32304).                if desiredReplicas > calculateScaleUpLimit(currentReplicas) {                        desiredReplicas = calculateScaleUpLimit(currentReplicas)                }                // 根据currentReplicas和desiredReplicas的对比,以及scale时间是否满足配置间隔要求,决定是否此时需要rescale                rescale = shouldScale(hpa, currentReplicas, desiredReplicas, timestamp)        }        if rescale {                scale.Spec.Replicas = desiredReplicas                // 执行ScaleInterface的Update接口,触发调用API Server的对应resource的scale subresource的数据更新。其实最终会去修改对应rc或者deployment的replicas,然后由rc或deployment Controller去最终扩容或者缩容,使得副本数达到新的期望值。                _, err = a.scaleNamespacer.Scales(hpa.Namespace).Update(hpa.Spec.ScaleTargetRef.Kind, scale)                if err != nil {                        a.eventRecorder.Eventf(hpa, v1.EventTypeWarning, "FailedRescale", "New size: %d; reason: %s; error: %v", desiredReplicas, rescaleReason, err.Error())                        return fmt.Errorf("failed to rescale %s: %v", reference, err)                }                a.eventRecorder.Eventf(hpa, v1.EventTypeNormal, "SuccessfulRescale", "New size: %d; reason: %s", desiredReplicas, rescaleReason)                glog.Infof("Successfull rescale of %s, old size: %d, new size: %d, reason: %s",                        hpa.Name, currentReplicas, desiredReplicas, rescaleReason)        } else {                desiredReplicas = currentReplicas        }        // 更新hpa resource的status数据        return a.updateStatus(hpa, currentReplicas, desiredReplicas, cpuCurrentUtilization, cmStatus, rescale)}

上面reconcileAutoscaler的代码很重要,把想说的都写到对应的注释了。其中computeReplicasForCPUUtilizationcomputeReplicasForCustomMetrics 需要单独提出来看看,因为这两个方法是HPA算法的体现,实际上最终算法是在pkg/controller/podautoscaler/replica_calculator.go:45#GetResourceReplicaspkg/controller/podautoscaler/replica_calculator.go:153#GetMetricReplicas实现的:

  • pkg/controller/podautoscaler/replica_calculator.go:45#GetResourceReplicas负责根据heapster提供的cpu利用率数据计算得到desired replicas number。

  • pkg/controller/podautoscaler/replica_calculator.go:153#GetMetricReplicas负责根据heapster提供的custom raw metric数据计算得到desired replicas number。

具体关于HPA算法的源码分析,我后续会单独写一篇博客,有兴趣的可以关注(对于绝大部分同学来说没必要关注,除非需要定制HPA算法时,才会具体去分析)。

总而言之,根据cpu和custom metric数据分别计算得到desired replicas后,取两者最大的值,但不能超过配置的Max Replicas。

稍等稍等,计算出了desired replicas还还够,我们还要通过shouldScale看看现在距离上一次弹性伸缩的时间间隔是否满足条件:

  • 两次缩容的间隔不得小于5min。

  • 两次扩容的间隔不得小于3min。

shouldScale的代码如下:

pkg/controller/podautoscaler/horizontal.go:387...var downscaleForbiddenWindow = 5 * time.Minutevar upscaleForbiddenWindow = 3 * time.Minute...func shouldScale(hpa *autoscaling.HorizontalPodAutoscaler, currentReplicas, desiredReplicas int32, timestamp time.Time) bool {        if desiredReplicas == currentReplicas {                return false        }        if hpa.Status.LastScaleTime == nil {                return true        }        // Going down only if the usageRatio dropped significantly below the target        // and there was no rescaling in the last downscaleForbiddenWindow.        if desiredReplicas < currentReplicas && hpa.Status.LastScaleTime.Add(downscaleForbiddenWindow).Before(timestamp) {                return true        }        // Going up only if the usage ratio increased significantly above the target        // and there was no rescaling in the last upscaleForbiddenWindow.        if desiredReplicas > currentReplicas && hpa.Status.LastScaleTime.Add(upscaleForbiddenWindow).Before(timestamp) {                return true        }        return false}

只有满足这个条件后,接着才会调用Scales.Update接口与API Server交互,完成Scale对应的RC的replicas的设置。以rc Controller为例(deployment Controller的雷同),API Server对应的Scales.Update接口的实现逻辑如下:

pkg/registry/core/rest/storage_core.go:91func (c LegacyRESTStorageProvider) NewLegacyRESTStorage(restOptionsGetter generic.RESTOptionsGetter) (LegacyRESTStorage, genericapiserver.APIGroupInfo, error) {        ...        if autoscalingGroupVersion := (schema.GroupVersion{Group: "autoscaling", Version: "v1"}); registered.IsEnabledVersion(autoscalingGroupVersion) {                apiGroupInfo.SubresourceGroupVersionKind["replicationcontrollers/scale"] = autoscalingGroupVersion.WithKind("Scale")        }        ...        restStorageMap := map[string]rest.Storage{                ...                                "replicationControllers":        controllerStorage.Controller,                "replicationControllers/status": controllerStorage.Status,                                ...        }        return restStorage, apiGroupInfo, nil}pkg/registry/core/controller/etcd/etcd.go:124func (r *ScaleREST) Update(ctx api.Context, name string, objInfo rest.UpdatedObjectInfo) (runtime.Object, bool, error) {        rc, err := r.registry.GetController(ctx, name, &metav1.GetOptions{})        if err != nil {                return nil, false, errors.NewNotFound(autoscaling.Resource("replicationcontrollers/scale"), name)        }        oldScale := scaleFromRC(rc)        obj, err := objInfo.UpdatedObject(ctx, oldScale)        if err != nil {                return nil, false, err        }        if obj == nil {                return nil, false, errors.NewBadRequest("nil update passed to Scale")        }        scale, ok := obj.(*autoscaling.Scale)        if !ok {                return nil, false, errors.NewBadRequest(fmt.Sprintf("wrong object passed to Scale update: %v", obj))        }        if errs := validation.ValidateScale(scale); len(errs) > 0 {                return nil, false, errors.NewInvalid(autoscaling.Kind("Scale"), scale.Name, errs)        }                // 设置rc对应spec.replicas为Scale中的期望副本数        rc.Spec.Replicas = scale.Spec.Replicas        rc.ResourceVersion = scale.ResourceVersion                // 更新到etcd        rc, err = r.registry.UpdateController(ctx, rc)        if err != nil {                return nil, false, err        }        return scaleFromRC(rc), false, nil}

了解kubernetes rc Controller的同学很清楚,修改rc的replicas后,会被rc Controller watch到,然后触发rc Controller去执行创建或者销毁对应差额数量的replicas,最终使得其副本数达到HPA计算得到的期望值。也就是说,最终由rc controller去执行具体的扩容或缩容动作。

最后,来看看HorizontalController的Run方法:

pkg/controller/podautoscaler/horizontal.go:130func (a *HorizontalController) Run(stopCh <-chan struct{}) {        defer utilruntime.HandleCrash()        glog.Infof("Starting HPA Controller")        go a.controller.Run(stopCh)        <-stopCh        glog.Infof("Shutting down HPA Controller")}

很简单,就是负责 HPA Resource的ListWatch,将change更新到对应的store(cache)。

HPA Resource的同步周期通过 --horizontal-pod-autoscaler-sync-period设置,默认值为30s。

感谢各位的阅读,以上就是"Kubernetes HPA Controller怎么使用"的内容了,经过本文的学习后,相信大家对Kubernetes HPA Controller怎么使用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0