千家信息网

Flink应用场景有哪些

发表于:2025-01-25 作者:千家信息网编辑
千家信息网最后更新 2025年01月25日,这篇文章给大家分享的是有关Flink应用场景有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。Apache Flink是什么?在当代数据量激增的时代,各种业务场景都有大量
千家信息网最后更新 2025年01月25日Flink应用场景有哪些

这篇文章给大家分享的是有关Flink应用场景有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

Apache Flink是什么?

在当代数据量激增的时代,各种业务场景都有大量的业务数据产生,对于这些不断产生的数据应该如何进行有效的处理,成为当下大多数公司所面临的问题。Apache Flink 是一个开源的分布式,高性能,高可用,准确的流处理框架。支持实时流处理和批处理 。

Flink 就是近年来在开源社区不断发展的技术中的能够同时支持高吞吐、低延迟、高性能的分布式处理框架。

应用场景

在实际生产过程中,大量的数据不断的产生,例如金融交易数据、互联网订单数据、GPS定位数据、传感器信号、移动终端产生的数据、通信信号数据等,以及我们熟悉的网络流量监控,服务器产生的日志数据,这些数据最大的共同点就是实时从不同的数据源中产生,然后再传输到下游的分析系统。针对这些数据类型主要包括实时智能推荐,复杂事件处理,实施欺诈检测,实时数仓,与ETL类型、流数据分析类型、实时报表类型等实施业务场景,而Flink对于这些类型的场景都有着非常好的支持。

1.实时智能推荐

智能推荐会根据用户历史的购买行为,通过推荐算法训练模型,预测用户未来可能会购买的物品。对个人来说,推荐系统起着信息过滤的作用,对Web/App服务端来说,推荐系统起着满足用户个性化需求,提升用户满意度的作用。推荐系统本身也在飞速发展,除了算法越来越完善,对时延的要求也越来越苛刻和实时化。利用Flink流计算帮助用户构建更加实时的智能推荐系统,对用户行为指标进行实时计算,对模型进行实时更新,对用户指标进行实时预测,并将预测的信息推送给Web/App端,帮助用户获取想要的商品信息,另一方面也帮助企业提升销售额,创造更大的商业价值。

2.复杂事件处理

对于复杂事件处理,比较常见的集中于工业领域,例如对车载传感器,机械设备等实时故障检测,这些业务类型通常数据量都非常大,且对数据处理的时效性要求非常高。通过利用Flink提供的CEP进行时间模式的抽取,同时应用Flink的Sql进行事件数据的转换,在流式系统中构建实施规则引擎,一旦事件触发报警规则,便立即将告警结果通知至下游通知系统,从而实现对设备故障快速预警检测,车辆状态监控等目的。

3.实时欺诈检测

在金融领域的业务中,常常出现各种类型的欺诈行为,例如信用卡欺诈,信贷申请欺诈等,而如何保证用户和公司的资金安全,是近年来许多金融公司及银行共同面对的挑战。随着不法分子欺诈手段的不断升级,传统的反欺诈手段已经不足以解决目前所面临的问题。以往可能需要几个小时才能通过交易数据计算出用户的行为指标,然后通过规则判别出具有欺诈行为嫌疑的用户,再进行案件调查处理,在这种情况下资金可能早已被不法分子转移,从而给企业和用户造成大量的经济损失。而运用Flink流式计算技术能够在毫秒内就完成对欺诈行为判断指标的计算,然后实时对交易流水进行实时拦截,避免因为处理不及时而导致的经济损失。

4.实时数仓与ETL

结合离线数仓,通过利用流计算的诸多优势和Sql灵活的加工能力,对流式数据进行实时清洗、归并、结构化处理,为离线数仓进行补充和优化。另一方面结合实时数据ETL处理能力,利用有状态流式计算技术,可以尽可能降低企业由于在离线数据计算过程中调度逻辑的复杂度,高效快速的处理企业需要的统计结果,帮助企业更好地应用实时数据所分析出来的结果。

5.流数据分析

实时计算各类数据指标,并利用实时结果及时调整在线相关策略,在各类内容投放、无线智能推送领域有大量的应用。流式计算技术将数据分析场景实时化,帮助企业做到实时化分析Web应用或者App应用的各项指标,包括App版本分布情况,Crash检测和分布等,同时提供多维度用户行为分析支持日志自主分析,助力开发者实现基于大数据技术的精细化运营,提升产品质量和体验,增强用户黏性。

感谢各位的阅读!关于"Flink应用场景有哪些"这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

0