千家信息网

怎么使用elk搭建密码top统计库

发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,怎么使用elk搭建密码top统计库,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。elk本身是非常强大的日志处理系统,分别
千家信息网最后更新 2025年01月20日怎么使用elk搭建密码top统计库

怎么使用elk搭建密码top统计库,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

elk本身是非常强大的日志处理系统,分别由elasticsearch、logstash、kibana构成,功能分别是数据库、数据处理、前端展示。利用这些搭建一套用于密码topN统计的系统。当然要完成这种统计需要强大的处理性能。

搭建基础环境

基础环境

操作系统: ubuntu 20.4 64位

内存:16G

硬盘:2T数据盘,128G ssd系统盘

ElasticSearch:7.10.1

Kibana:7.10.1

Logstash:7.10.1

1、elasticsearch

解压文件,tar -zxvf elasticsearch*.tar.gz,切换目录到elasticsearch中,之后所有关于elasticsearch的设置基本发生在此目录中

修改配置文件,conf/elasticsearch.yml

建议修改如下 配置

----------路径---------- 根据实际情况做修改 #数据存储路径 #path.data: /path/to/data #日志文件路径 #path.logs: /path/to/logs ----------内存---------- #在启动过程中是否为内存加锁: bootstrap.memory_lock: true 请保证 `ES_HEAP_SIZE` 环境变量的设置大约为系统可用内存的一半 ----------网络----------- #绑定IP地址,单机搭建的情况建议改成127.0.0.1, network.host:127.0.0.1 http.port:9200

启动elasticsearch

通过命令./bin/elasticsearch 直接启动,以前台的形式运行。通过命令curl 127.0.0.1:9200查看是否启动成功。

但是可以在使用过程中会报错,就是内存不足。此时需要修改jvm的大小。这个大小建议改成实际内存的一半。比我的电脑实际内存为16G,这里我用的就是8g。

文件位置:./config/jvm.options

-Xms8g
-Xmx8g

之后使用命令nohup ./bin/elasticsearch &以后台的方式运行ES

2、Kibana

下载kibana

解压文件,tar -zxvf kibana*.tar.gz,切换目录到kibana中,之后所有关于kibana的设置基本发生在此目录中。

kibana配置文件位置./config/kibana.yml

#监听端口 server.port: 5601 #默认配置 #IP配置 server.host: 0.0.0.0 #建议改成全部网卡 #elasticsearch 地址 elasticsearch.hosts:["http://localhost:9200"] #根据实际情况配置,我上面配置的是localhost也就是127.0.0.1

之后通过命令nohup ./bin/kibana &在后台运行kabana,通过host:5601在浏览器访问kibana

3、logstash

添加数据实际上比较好用的方式是使用logstash进行数据导入,这种方式可以根据自己的实际情况,编写数据格式,定制化高,但是有一定的难度。实际上logstash也是整个部分中最重要的地方,就是数据导入,通过logstash可以将各种类型的数据格式后后导入到ES 中存储。

3.1 基础知识

下载logstash

解压文件,tar -zxvf logstash*.tar.gz,切换目录到logstash中,之后所有关于logstash的设置基本发生在此目录中。

开始进行数据 导入前,我们先理解一个东西,logstash实际上是用来收集日志并进行格式化处理的一个工具,集input、filter和output等插件

input可以接受来自beat(elk中一个轻量级的客户端,有多种beat,有兴趣的朋友可以自行了解)、日志文件、syslog等方式收集的日志。具体的可以参考官方手册https://www.elastic.co/guide/en/logstash/current/input-plugins.html。我们这里使用的是file插件。

filter可以使用grok、json、xml等方式格式化数据,根据实际情况选择某种方式具体的可以参考官方手册https://www.elastic.co/guide/en/logstash/current/filter-plugins.html。我们这里使用的主要是grok,可以根据文件情况编写不同的正则表达式来处理文件。

output实际上是结果的输出,也支持多种插件如syslog、csv、file等,具体参考官方手册https://www.elastic.co/guide/en/logstash/current/output-plugins.html ,我们这里使用的elasticsearch,将结果输出到es中。

3.2 简单的配置

示例文件weakpass.txt

admin----123456
admin----admin
admin----1
admin----12345
test----123
test----test
test----1234
……

config 目录下有个名为lostash-sample.conf的示例文件

# Sample Logstash configuration for creating a simple# Beats -> Logstash -> Elasticsearch pipeline.#数据源也就是输入配置input {#这里使用的是beats插件  beats {    port => 5044  }}#数据输出使用的是elasticsearch插件output {  elasticsearch {    hosts => ["http://localhost:9200"]    index => "%{[@metadata][beat]}-%{[@metadata][version]}-%{+YYYY.MM.dd}"    #user => "elastic"    #password => "changeme"  }}

我们根据上面的示例文件配置一个weakpass.conf文件

input{    file {       #要导入的示例文件    path => "path/weakpass.txt"    #开始位置    start_position => "beginning"    }}filter{    grok{        match => {        #格式化数据        "message"=>"(?.*?)----(?.*)"        }    }}output{    #使用debug将结果输出到屏幕中    stdout {            codec => rubydebug    }}

使用命令 ./bin/logstash -f config/weakpass.conf来使用我们写的配置文件导入数据。

如果运行命令之后没有数据输出,建议删除./data的所有文件,一定要看清楚目录。

3.3 垃圾数据剔除

为了减少数据的冗余度及硬盘空间的大小,所以我们要根据情况删除一些无用字段,如path、message、host等。我们在gork中加入配置

remove_field=>["path","message","host"]

通过这样的配置,我们的数据量就减少了,其实时间戳也是可以删除了,而且并没有存在的意义,每条记录都带一个时间戳,实在是占用硬盘 空间。

3.4 数据导入ES

因为我们是在测试,所有使用的文件一直是weakpass.txt,logstash存在一个问题,处理过一次的数据,不会重复处理(描述不一定正确)。所有建议清空data目录。再进行下面的操作。

修改配置文件如下

input{        file {            #要导入的示例文件                path => "/media/k2/5fcda6c4-e009-41dd-a314-c54c3c55126b/elk/weakpass1.txt"                start_position => "beginning"        }}filter{        grok{                   match => {                        #格式化数据                        "message"=>"(?.*?)----(?.*)"                }                remove_field=>["path","message","host","@timestamp"]                #设置标签,当我们数据量比较多的时候可以区分数据                add_tag => "weakpass"        }}output{        #使用debug将结果输出到屏幕中        #stdout{ codec => rubydebug}        elasticsearch{                action => "index"                index => "weakpass"#索引名称                hosts => ["127.0.0.1:9200"] #ES地址        }               }
3.5 使用kinaba

之后我们就可以在kibana中的索引管理中看到我们的索引

这是我们就可以根据所以创建索引模式了

创建完成后就可以在discover中检索数据了

比如我们输入1,就可以检索到所有跟1相关的数据,

我们也可以检索用户名为admin的数据,这个就之会出来用户名为admin的用户了

统计密码排行

使用kibana的dashboard可以统计密码排行

创建Data Table,选择源为我们上面创建的,之后进行如下的配置

这样我们就得到了上面排名了。因为数据比较少,所以统计速度快,这里就做了演示,没有进行更多的数据导入了。

优化

优化存储

由于logstash在导入数据中会加入一些无用的字段,这些字段会在每一条记录中都出现,所以可以删除来减少服务器的存储空间。

path 原始路径

message 完整记录

host 主机名

@timestamp 时间戳

input{}filter{        grok{                match => {                        #格式化数据                        "message"=>".*"                }                remove_field=>["path","message","host","@timestamp"]                #设置标签                add_tag => "weakpass"        }}output{}

优化索引

由于我们要导入不同的口令文件,所以我们要为后面的检索做好准备,这里我们就要根据导入内容的不同在output部分写上不同类型的索引,方便后面做检索使用。

output{        #使用debug将结果输出到屏幕中#       stdout{ codec => rubydebug}        elasticsearch{                action => "index"                index => "weakpass-mail-111" # 索引名                hosts => ["127.0.0.1:9200"]        }}

index => 索引名,如果我们要导入的密码包括不同类型,这里抖机灵一下,写上不同的类型,
如weakpass-mail-1、weakpass-q-1、weakpass-b-1,这样我们在利用kibana进行创建索引样式时就可以创建weakpass*这一类的样式了。

之后便可以在discover中选择对应的pattern来检索某一类数据。

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。

0