怎么用python完成一个分布式事务TCC
这篇文章主要讲解了"怎么用python完成一个分布式事务TCC",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"怎么用python完成一个分布式事务TCC"吧!
1、TCC组成
TCC分为3个阶段
Try 阶段:尝试执行,完成所有业务检查(一致性), 预留必须业务资源(准隔离性)
Confirm 阶段:如果所有分支的Try都成功了,则走到
Confirm
阶段。Confirm
真正执行业务,不作任何业务检查,只使用 Try 阶段预留的业务资源Cancel 阶段:如果所有分支的Try有一个失败了,则走到
Cancel
阶段。Cancel
释放Try
阶段预留的业务资源。
TCC分布式事务里,有3个角色,与经典的XA分布式事务一样:
AP/应用程序,发起全局事务,定义全局事务包含哪些事务分支
RM/资源管理器,负责分支事务各项资源的管理
TM/事务管理器,负责协调全局事务的正确执行,包括
Confirm
,Cancel
的执行,并处理网络异常
如果我们要进行一个类似于银行跨行转账的业务,转出(TransOut
)和转入(TransIn
)分别在不同的微服务里,
一个成功完成的TCC事务典型的时序图如下:
2、TCC实践
对于前面的跨行转账操作,最简单的做法是,在Try阶段调整余额,在Cancel阶段反向调整余额,Confirm
阶段则空操作。这么做带来的问题是,如果A扣款成功,金额转入B失败,最后回滚,把A的余额调整为初始值。在这个过程中如果A发现自己的余额被扣减了,但是收款方B迟迟没有收到余额,那么会对A造成困扰。
更好的做法是,Try阶段冻结A转账的金额,Confirm
进行实际的扣款,Cancel
进行资金解冻,这样用户在任何一个阶段,看到的数据都是清晰明了的。
下面我们进行一个TCC事务的具体开发
目前可用于TCC的开源框架,主要为Java语言,其中以seata
为代表。我们的例子采用Python
语言,使用的分布式事务框架为 https://github.com/yedf/dtm ,它对分布式事务的支持非常优雅。下面来详细讲解TCC
的组成
我们首先创建两张表,一张是用户余额表,一张是冻结资金表,建表语句如下:
CREATE TABLE dtm_busi.`user_account` ( `id` int(11) AUTO_INCREMENT PRIMARY KEY, `user_id` int(11) not NULL UNIQUE , `balance` decimal(10,2) NOT NULL DEFAULT '0.00', `create_time` datetime DEFAULT now(), `update_time` datetime DEFAULT now());CREATE TABLE dtm_busi.`user_account_trading` ( `id` int(11) AUTO_INCREMENT PRIMARY KEY, `user_id` int(11) not NULL UNIQUE , `trading_balance` decimal(10,2) NOT NULL DEFAULT '0.00', `create_time` datetime DEFAULT now(), `update_time` datetime DEFAULT now());
trading
表中,trading_balance
记录正在交易的金额。
我们先编写核心代码,冻结/解冻资金操作,会检查约束balance+trading_balance >= 0
,如果约束不成立,执行失败
def tcc_adjust_trading(cursor, uid, amount): affected = utils.sqlexec(cursor, "update dtm_busi.user_account_trading set trading_balance=trading_balance + %d where user_id=%d and trading_balance + %d + (select balance from dtm_busi.user_account where id=%d) >= 0" % (amount, uid, amount, uid)) if affected == 0: raise Exception("update error, maybe balance not enough")
然后是调整余额
def tcc_adjust_balance(cursor, uid, amount): utils.sqlexec(cursor, "update dtm_busi.user_account_trading set trading_balance = trading_balance+ %d where user_id=%d" %( -amount, uid)) utils.sqlexec(cursor, "update dtm_busi.user_account set balance=balance+%d where user_id=%d" %(amount, uid))
下面我们来编写具体的Try/Confirm/Cancel
的处理函数
@app.post("/api/TransOutTry")def trans_out_try(): # 事务以及异常处理 tcc_adjust_trading(c, out_uid, -30) return {"dtm_result": "SUCCESS"}@app.post("/api/TransOutConfirm")def trans_out_confirm(): # 事务以及异常处理 tcc_adjust_balance(c, out_uid, -30) return {"dtm_result": "SUCCESS"}@app.post("/api/TransOutCancel")def trans_out_cancel(): # 事务以及异常处理 tcc_adjust_trading(c, out_uid, 30) return {"dtm_result": "SUCCESS"}@app.post("/api/TransInTry")def trans_in_try(): # 事务以及异常处理 tcc_adjust_trading(c, in_uid, 30) return {"dtm_result": "SUCCESS"}@app.post("/api/TransInConfirm")def trans_in_confirm(): # 事务以及异常处理 tcc_adjust_balance(c, in_uid, 30) return {"dtm_result": "SUCCESS"}@app.post("/api/TransInCancel")def trans_in_cancel(): # 事务以及异常处理 tcc_adjust_trading(c, in_uid, -30) return {"dtm_result": "SUCCESS"}
到此各个子事务的处理函数已经OK了,然后是开启TCC事务,进行分支调用
@app.get("/api/fireTcc")def fire_tcc(): # 发起tcc事务 gid = tcc.tcc_global_transaction(dtm, utils.gen_gid(dtm), tcc_trans) return {"gid": gid}# tcc事务的具体处理def tcc_trans(t): req = {"amount": 30} # 业务请求的负荷 # 调用转出服务的Try|Confirm|Cancel t.call_branch(req, svc + "/TransOutTry", svc + "/TransOutConfirm", svc + "/TransOutCancel") # 调用转入服务的Try|Confirm|Cancel t.call_branch(req, svc + "/TransInTry", svc + "/TransInConfirm", svc + "/TransInCancel")
至此,一个完整的TCC
分布式事务编写完成。
如果您想要完整运行一个成功的示例,那么按照dtmcli-py-sample
项目的说明tcc的例子即可
3、TCC的回滚
假如银行将金额准备转入用户2时,发现用户2的账户异常,返回失败,会怎么样?我们修改代码,模拟这种情况:
@app.post("/api/TransInTry")def trans_in_try(): # 事务以及异常处理 tcc_adjust_trading(c, in_uid, 30) return {"dtm_result": "FAILURE"}
这是事务失败交互的时序图:
这个跟成功的TCC差别就在于,当某个子事务返回失败后,后续就回滚全局事务,调用各个子事务的Cancel
操作,保证全局事务全部回滚。
4、TCC网络异常
TCC
在整个全局事务的过程中,可能发生各类网络异常情况,典型的是空回滚、幂等、悬挂,由于TCC
的异常情况,和SAGA
、可靠消息等事务模式有相近的地方,因此我们把所有异常的解决方案统统放在这篇文章 分布式事务最经典的七种解决方案 的异常处理章节进行讲解
感谢各位的阅读,以上就是"怎么用python完成一个分布式事务TCC"的内容了,经过本文的学习后,相信大家对怎么用python完成一个分布式事务TCC这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!