千家信息网

SQLserver中cube多维数据集的示例分析

发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,这篇文章主要介绍SQLserver中cube多维数据集的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!1、cube:生成多维数据集,包含各维度可能组合的交叉表格,使用w
千家信息网最后更新 2025年01月20日SQLserver中cube多维数据集的示例分析

这篇文章主要介绍SQLserver中cube多维数据集的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

1、cube:生成多维数据集,包含各维度可能组合的交叉表格,使用with 关键字连接 with cube

根据需要使用union all 拼接

判断 某一列的null值来自源数据还是 cube 使用GROUPING关键字

GROUPING([档案号]) = 1 : null值来自cube(代表所有的档案号)
GROUPING([档案号]) = 0 : null值来自源数据

举例:

SELECT * INTO ##GETFROM   (SELECT *    FROM ( SELECT      CASE      WHEN (GROUPING([档案号]) = 1) THEN      '合计'      ELSE [档案号]      END AS '档案号',      CASE      WHEN (GROUPING([系列]) = 1) THEN      '合计'      ELSE [系列]      END AS '系列',      CASE      WHEN (GROUPING([店长]) = 1) THEN      '合计'      ELSE [店长]      END AS '店长', SUM (剩余次数) AS '总剩余',      CASE      WHEN (GROUPING([店名]) = 1) THEN      '合计'      ELSE [店名]      END AS '店名'    FROM ##PudianCard    GROUP BY [档案号], [店名], [店长], [系列]    WITH cube    HAVING GROUPING([店名]) != 1        AND GROUPING([档案号]) = 1 --AND GROUPING([系列]) = 1 ) AS M    UNION    ALL       (SELECT *        FROM ( SELECT          CASE          WHEN (GROUPING([档案号]) = 1) THEN          '合计'          ELSE [档案号]          END AS '档案号',          CASE          WHEN (GROUPING([系列]) = 1) THEN          '合计'          ELSE [系列]          END AS '系列',          CASE          WHEN (GROUPING([店长]) = 1) THEN          '合计'          ELSE [店长]          END AS '店长', SUM (剩余次数) AS '总剩余',          CASE          WHEN (GROUPING([店名]) = 1) THEN          '合计'          ELSE [店名]          END AS '店名'        FROM ##PudianCard        GROUP BY [档案号], [店名], [店长], [系列]        WITH cube        HAVING GROUPING([店名]) != 1            AND GROUPING([店长]) != 1 ) AS P )        UNION        ALL           (SELECT *            FROM ( SELECT              CASE              WHEN (GROUPING([档案号]) = 1) THEN              '合计'              ELSE [档案号]              END AS '档案号',              CASE              WHEN (GROUPING([系列]) = 1) THEN              '合计'              ELSE [系列]              END AS '系列',              CASE              WHEN (GROUPING([店长]) = 1) THEN              '合计'              ELSE [店长]              END AS '店长', SUM (剩余次数) AS '总剩余',              CASE              WHEN (GROUPING([店名]) = 1) THEN              '合计'              ELSE [店名]              END AS '店名'            FROM ##PudianCard            GROUP BY [档案号], [店名], [店长], [系列]            WITH cube            HAVING GROUPING([店名]) != 1                AND GROUPING([店长]) != 1 ) AS W )            UNION            ALL               (SELECT *                FROM ( SELECT                  CASE                  WHEN (GROUPING([档案号]) = 1) THEN                  '合计'                  ELSE [档案号]                  END AS '档案号',                  CASE                  WHEN (GROUPING([系列]) = 1) THEN                  '合计'                  ELSE [系列]                  END AS '系列',                  CASE                  WHEN (GROUPING([店长]) = 1) THEN                  '合计'                  ELSE [店长]                  END AS '店长', SUM (剩余次数) AS '总剩余',                  CASE                  WHEN (GROUPING([店名]) = 1) THEN                  '合计'                  ELSE [店名]                  END AS '店名'                FROM ##PudianCard                GROUP BY [档案号], [店名], [店长], [系列]                WITH cube                HAVING GROUPING([店名]) = 1                    AND GROUPING([店长]) = 1                    AND GROUPING([档案号]) = 1 ) AS K ) ) AS T

2、rollup:功能跟cube相似

3、将某一列的数据作为列名,动态加载,使用存储过程,拼接字符串

DECLARE @st nvarchar (MAX) = '';SELECT @st =@st + 'max(case when [系列]=''' + CAST ([系列] AS VARCHAR) + ''' then [总剩余] else null end ) as [' + CAST ([系列] AS VARCHAR) + '],'FROM ##GETGROUP BY [系列]; print @st;

4、根据某一列分组,分别建表

SELECT                                'select ROW_NUMBER() over(order by [卡项] desc) as [序号], [会员],[档案号],[卡项],[剩余次数],[员工],[店名] into ' + ltrim([店名]) + ' from 查询 where [店名]=''' + [店名] + ''' ORDER BY [卡项] desc'                FROM                        查询                GROUP BY                        [店名]

以上是"SQLserver中cube多维数据集的示例分析"这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注行业资讯频道!

0