pandas的函数应用
发表于:2025-01-27 作者:千家信息网编辑
千家信息网最后更新 2025年01月27日,Pandas的函数应用apply 和 applymap1. 可直接使用NumPy的函数示例代码:df = pd.DataFrame(np.random.randn(5, 4) - 1)print(df
千家信息网最后更新 2025年01月27日pandas的函数应用
Pandas的函数应用
apply 和 applymap
1. 可直接使用NumPy的函数
示例代码:
df = pd.DataFrame(np.random.randn(5, 4) - 1)print(df)print(np.abs(df))
运行结果:
0 1 2 30 -0.062413 0.844813 -1.853721 -1.9807171 -0.539628 -1.975173 -0.856597 -2.6124062 -1.277081 -1.088457 -0.152189 0.5303253 -1.356578 -1.996441 0.368822 -2.2114784 -0.562777 0.518648 -2.007223 0.059411 0 1 2 30 0.062413 0.844813 1.853721 1.9807171 0.539628 1.975173 0.856597 2.6124062 1.277081 1.088457 0.152189 0.5303253 1.356578 1.996441 0.368822 2.2114784 0.562777 0.518648 2.007223 0.059411
2. 通过apply将函数应用到列或行上
示例代码:
# 使用apply应用行或列数据#f = lambda x : x.max()print(df.apply(lambda x : x.max()))
运行结果:
0 -0.0624131 0.8448132 0.3688223 0.530325dtype: float64
注意指定轴的方向,默认axis=0,方向是列
# 指定轴方向,axis=1,方向是行print(df.apply(lambda x : x.max(), axis=1))```python0 -0.0624131 0.8448132 0.3688223 0.530325dtype: float64
3. 通过applymap将函数应用到每个数据上
示例代码:
# 使用applymap应用到每个数据f2 = lambda x : '%.2f' % xprint(df.applymap(f2))
运行结果:
0 1 2 30 -0.06 0.84 -1.85 -1.981 -0.54 -1.98 -0.86 -2.612 -1.28 -1.09 -0.15 0.533 -1.36 -2.00 0.37 -2.214 -0.56 0.52 -2.01 0.06
排序
1. 索引排序
sort_index()
排序默认使用升序排序,ascending=False 为降序排序
示例代码:
# Seriess4 = pd.Series(range(10, 15), index = np.random.randint(5, size=5))print(s4)# 索引排序s4.sort_index() # 0 0 1 3 3
运行结果:
0 103 111 123 130 14dtype: int640 100 141 123 113 13dtype: int64
对DataFrame操作时注意轴方向
示例代码:
# DataFramedf4 = pd.DataFrame(np.random.randn(3, 5), index=np.random.randint(3, size=3), columns=np.random.randint(5, size=5))print(df4)df4_isort = df4.sort_index(axis=1, ascending=False)print(df4_isort) # 4 2 1 1 0
运行结果:
1 4 0 1 22 -0.416686 -0.161256 0.088802 -0.004294 1.1641381 -0.671914 0.531256 0.303222 -0.509493 -0.3425731 1.988321 -0.466987 2.787891 -1.105912 0.889082 4 2 1 1 02 -0.161256 1.164138 -0.416686 -0.004294 0.0888021 0.531256 -0.342573 -0.671914 -0.509493 0.3032221 -0.466987 0.889082 1.988321 -1.105912 2.787891
2. 按值排序
sort_values(by='column name')
根据某个唯一的列名进行排序,如果有其他相同列名则报错。
示例代码:
# 按值排序df4_vsort = df4.sort_values(by=0, ascending=False)print(df4_vsort)
运行结果:
1 4 0 1 21 1.988321 -0.466987 2.787891 -1.105912 0.8890821 -0.671914 0.531256 0.303222 -0.509493 -0.3425732 -0.416686 -0.161256 0.088802 -0.004294 1.164138
处理缺失数据
示例代码:
df_data = pd.DataFrame([np.random.randn(3), [1., 2., np.nan], [np.nan, 4., np.nan], [1., 2., 3.]])print(df_data.head())
运行结果:
0 1 20 -0.281885 -0.786572 0.4871261 1.000000 2.000000 NaN2 NaN 4.000000 NaN3 1.000000 2.000000 3.000000
1. 判断是否存在缺失值:isnull()
示例代码:
# isnullprint(df_data.isnull())
运行结果:
0 1 20 False False False1 False False True2 True False True3 False False False
2. 丢弃缺失数据:dropna()
根据axis轴方向,丢弃包含NaN的行或列。 示例代码:
# dropnaprint(df_data.dropna())print(df_data.dropna(axis=1))
运行结果:
0 1 20 -0.281885 -0.786572 0.4871263 1.000000 2.000000 3.000000 10 -0.7865721 2.0000002 4.0000003 2.000000
3. 填充缺失数据:fillna()
示例代码:
# fillnaprint(df_data.fillna(-100.))
运行结果:
0 1 20 -0.281885 -0.786572 0.4871261 1.000000 2.000000 -100.0000002 -100.000000 4.000000 -100.0000003 1.000000 2.000000 3.000000
代码
示例
结果
运行
排序
数据
方向
应用
函数
缺失
索引
相同
升序
处理
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
诺亚方舟手游怎么开服务器
国内网络安全形势日益严峻
计算机三级网络技术好考不
联想服务器不能开机
软件开发都需要什么基础
华为服务器h58m系统安装
网络安全小故事视频
rds数据库安全访问
本科网络安全毕业设计
工行软件开发岗面试经验
济南灵均互联网科技
vb 获取数据到数据库连接
智能软件开发资费
众人 网络安全宣传周
华为现在还有服务器吗
网络安全报警分析
ip网络技术用途
数据库应用领域调查工具
bis医学数据库来源
樱花校园模拟器登录服务器有问题
腾讯科技互联网
东营服务器运维管理系统设备
海南游爱网络技术有限公司
突发网络安全事件教学案例
软件开发合同免责条款
重庆互联网科技行业现状
丽江网络安全相关培训哪里学
软件开发了解用户的业务
有关网络安全的教育总结报告
零售软件开发