千家信息网

Java怎么通过AQS实现数据组织

发表于:2025-01-16 作者:千家信息网编辑
千家信息网最后更新 2025年01月16日,这篇文章主要讲解了"Java怎么通过AQS实现数据组织",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Java怎么通过AQS实现数据组织"吧!AQS通过
千家信息网最后更新 2025年01月16日Java怎么通过AQS实现数据组织

这篇文章主要讲解了"Java怎么通过AQS实现数据组织",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Java怎么通过AQS实现数据组织"吧!

AQS

通过前面的介绍,大家一定看出来了,上述的各种类型的锁和一些线程控制接口(CountDownLatch 等),最终都是通过 AQS 来实现的,不同之处只在于 tryAcquire 等抽象函数如何实现。从这个角度来看,AQS(AbstractQueuedSynchronizer) 这个基类设计的真的很不错,能够包容各种同步控制方案,并提供了必须的下层依赖:比如阻塞,队列等。接下来我们就来揭开它神秘的面纱。

内部数据

AQS 顾名思义,就是通过队列来组织修改互斥资源的请求。当这个资源空闲时间,那么修改请求可以直接进行,而当这个资源处于锁定状态时,就需要等待,AQS 会将所有等待的请求维护在一个类似于 CLH 的队列中。CLH:Craig、Landin and Hagersten队列,是单向链表,AQS中的队列是CLH变体的虚拟双向队列(FIFO),AQS是通过将每条请求共享资源的线程封装成一个节点来实现锁的分配。主要原理图如下:

图中的 state 是一个用 volatile 修饰的 int 变量,它的使用都是通过 CAS 来进行的,而 FIFO 队列完成请求排队的工作,队列的操作也是通过 CAS 来进行的,正因如此该队列的操作才能达到理想的性能要求。

通过 CAS 修改 state 比较容易,大家应该都能理解,但是如果要通过 CAS 维护一个双向队列要怎么做呢?这里我们看一下 AQS 中 CLH 队列的实现。在 AQS 中有两个指针一个指针指向了队列头,一个指向了队列尾。它们都是懒初始化的,也就是说最初都为null。

/** * Head of the wait queue, lazily initialized.  Except for * initialization, it is modified only via method setHead.  Note: * If head exists, its waitStatus is guaranteed not to be * CANCELLED. */private transient volatile Node head;/** * Tail of the wait queue, lazily initialized.  Modified only via * method enq to add new wait node. */private transient volatile Node tail;

队列中的每个节点,都是一个 Node 实例,该实例的第一个关键字段是 waitState,它表述了当前节点所处的状态,通过 CAS 进行修改:

  • SIGNAL:表示当前节点承担唤醒后继节点的责任

  • CANCELLED:表示当前节点已经超时或者被打断

  • CONDITION:表示当前节点正在 Condition 上等待(通过锁可以创建 Condition 对象)

  • PROPAGATE:只会设置在 head 节点上,用于表明释放共享锁时,需要将这个行为传播到其他节点上,这个我们稍后详细介绍。

static final class Node {    /** Marker to indicate a node is waiting in shared mode */    static final Node SHARED = new Node();    /** Marker to indicate a node is waiting in exclusive mode */    static final Node EXCLUSIVE = null;    /** waitStatus value to indicate thread has cancelled */    static final int CANCELLED =  1;    /** waitStatus value to indicate successor's thread needs unparking */    static final int SIGNAL    = -1;    /** waitStatus value to indicate thread is waiting on condition */    static final int CONDITION = -2;    /**     * waitStatus value to indicate the next acquireShared should     * unconditionally propagate     */    static final int PROPAGATE = -3;    /**     * Status field, taking on only the values:     *   SIGNAL:     The successor of this node is (or will soon be)     *               blocked (via park), so the current node must     *               unpark its successor when it releases or     *               cancels. To avoid races, acquire methods must     *               first indicate they need a signal,     *               then retry the atomic acquire, and then,     *               on failure, block.     *   CANCELLED:  This node is cancelled due to timeout or interrupt.     *               Nodes never leave this state. In particular,     *               a thread with cancelled node never again blocks.     *   CONDITION:  This node is currently on a condition queue.     *               It will not be used as a sync queue node     *               until transferred, at which time the status     *               will be set to 0. (Use of this value here has     *               nothing to do with the other uses of the     *               field, but simplifies mechanics.)     *   PROPAGATE:  A releaseShared should be propagated to other     *               nodes. This is set (for head node only) in     *               doReleaseShared to ensure propagation     *               continues, even if other operations have     *               since intervened.     *   0:          None of the above     *     * The values are arranged numerically to simplify use.     * Non-negative values mean that a node doesn't need to     * signal. So, most code doesn't need to check for particular     * values, just for sign.     *     * The field is initialized to 0 for normal sync nodes, and     * CONDITION for condition nodes.  It is modified using CAS     * (or when possible, unconditional volatile writes).     */    volatile int waitStatus;    /**     * Link to predecessor node that current node/thread relies on     * for checking waitStatus. Assigned during enqueuing, and nulled     * out (for sake of GC) only upon dequeuing.  Also, upon     * cancellation of a predecessor, we short-circuit while     * finding a non-cancelled one, which will always exist     * because the head node is never cancelled: A node becomes     * head only as a result of successful acquire. A     * cancelled thread never succeeds in acquiring, and a thread only     * cancels itself, not any other node.     */    volatile Node prev;    /**     * Link to the successor node that the current node/thread     * unparks upon release. Assigned during enqueuing, adjusted     * when bypassing cancelled predecessors, and nulled out (for     * sake of GC) when dequeued.  The enq operation does not     * assign next field of a predecessor until after attachment,     * so seeing a null next field does not necessarily mean that     * node is at end of queue. However, if a next field appears     * to be null, we can scan prev's from the tail to     * double-check.  The next field of cancelled nodes is set to     * point to the node itself instead of null, to make life     * easier for isOnSyncQueue.     */    volatile Node next;    /**     * The thread that enqueued this node.  Initialized on     * construction and nulled out after use.     */    volatile Thread thread;    /**     * Link to next node waiting on condition, or the special     * value SHARED.  Because condition queues are accessed only     * when holding in exclusive mode, we just need a simple     * linked queue to hold nodes while they are waiting on     * conditions. They are then transferred to the queue to     * re-acquire. And because conditions can only be exclusive,     * we save a field by using special value to indicate shared     * mode.     */    Node nextWaiter;    /**     * Returns true if node is waiting in shared mode.     */    final boolean isShared() {        return nextWaiter == SHARED;    }    //...}

因为是双向队列,所以 Node 实例中势必有 prev 和 next 指针,此外 Node 中还会保存与其对应的线程。最后是 nextWaiter,当一个节点对应了共享请求时,nextWaiter 指向了 Node. SHARED 而当一个节点是排他请求时,nextWaiter 默认指向了 Node. EXCLUSIVE 也就是 null。我们知道 AQS 也提供了 Condition 功能,该功能就是通过 nextWaiter 来维护在 Condition 上等待的线程。也就是说这里的 nextWaiter 在锁的实现部分中,扮演者共享锁和排它锁的标志位,而在条件等待队列中,充当链表的 next 指针。

同步队列

接下来,我们由最常见的入队操作出发,介绍 AQS 框架的实现与使用。从下面的代码中可以看到入队操作支持两种模式,一种是排他模式,一种是共享模式,分别对应了排它锁场景和共享锁场景。

  1. 当任意一种请求,要入队时,先会构建一个 Node 实例,然后获取当前 AQS 队列的尾结点,如果尾结点为空,就是说队列还没初始化,初始化过程在后面 enq 函数中实现

  2. 这里我们先看初始化之后的情况,即 tail != null,先将当前 Node 的前向指针 prev 更新,然后通过 CAS 将尾结点修改为当前 Node,修改成功时,再更新前一个节点的后向指针 next,因为只有修改尾指针过程是原子的,所以这里会出现新插入一个节点时,之前的尾节点 previousTail 的 next 指针为null的情况,也就是说会存在短暂的正向指针和反向指针不同步的情况,不过在后面的介绍中,你会发现 AQS 很完备地避开了这种不同步带来的风险(通过从后往前遍历)

  3. 如果上述操作成功,则当前线程已经进入同步队列,否则,可能存在多个线程的竞争,其他线程设置尾结点成功了,而当前线程失败了,这时候会和尾结点未初始化一样进入 enq 函数中。

/** * Creates and enqueues node for current thread and given mode. * * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared * @return the new node */private Node addWaiter(Node mode) {    Node node = new Node(Thread.currentThread(), mode);    // Try the fast path of enq; backup to full enq on failure    Node pred = tail;    if (pred != null) {        // 已经进行了初始化        node.prev = pred;        // CAS 修改尾节点        if (compareAndSetTail(pred, node)) {            // 成功之后再修改后向指针            pred.next = node;            return node;        }    }    // 循环 CAS 过程和初始化过程    enq(node);    return node;}

正常通过 CAS 修改数据都会在一个循环中进行,而这里的 addWaiter 只是在一个 if 中进行,这是为什么呢?实际上,大家看到的 addWaiter 的这部分 CAS 过程是一个快速执行线,在没有竞争时,这种方式能省略不少判断过程。当发生竞争时,会进入 enq 函数中,那里才是循环 CAS 的地方。

  1. 整个 enq 的工作在一个循环中进行

  2. 先会检查是否未进行初始化,是的话,就设置一个虚拟节点 Node 作为 head 和 tail,也就是说同步队列的第一个节点并不保存实际数据,只是一个保存指针的地方

  3. 初始化完成后,通过 CAS 修改尾节点,直到修改成功为止,最后修复后向指针

/** * Inserts node into queue, initializing if necessary. See picture above. * @param node the node to insert * @return node's predecessor */private Node enq(final Node node) {    for (;;) {// 在一个循环中进行 CAS 操作        Node t = tail;        if (t == null) { // Must initialize            if (compareAndSetHead(new Node()))                tail = head;        } else {            node.prev = t;            // CAS 修改尾节点            if (compareAndSetTail(t, node)) {                // 成功之后再修改后向指针                t.next = node;                return t;            }        }

感谢各位的阅读,以上就是"Java怎么通过AQS实现数据组织"的内容了,经过本文的学习后,相信大家对Java怎么通过AQS实现数据组织这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0