python Logistic回归怎么实现
发表于:2025-02-23 作者:千家信息网编辑
千家信息网最后更新 2025年02月23日,本篇内容主要讲解"python Logistic回归怎么实现",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"python Logistic回归怎么实现"吧!
千家信息网最后更新 2025年02月23日python Logistic回归怎么实现
本篇内容主要讲解"python Logistic回归怎么实现",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"python Logistic回归怎么实现"吧!
背景介绍
不要被它的名字弄糊涂!它是一种分类而非回归算法。它用于根据给定的自变量集估计离散值(二进制值,如0/1,yes/no,true/false)。简单来说,它通过将数据拟合到logit函数来预测事件发生的概率。因此,它也被称为logit回归。由于它预测概率,因此其输出值介于0和1之间(如预期的那样)。
再次,让我们通过一个简单的例子来尝试理解这一点。
假设你的朋友给你一个难题来解决。只有2个结果场景 - 要么你解决它,要么你没解决。现在想象一下,你正在获得各种各样的谜题/测验,试图了解你擅长哪些科目。这项研究的结果将是这样的 - 如果给你一个基于三角测量的十年级问题,你有70%的可能解决它。另一方面,如果是第五级历史问题,获得答案的概率仅为30%。这就是Logistic回归为您提供的。
在数学领域,结果的对数几率被建模为预测变量的线性组合:
odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
ln(odds) = ln(p/(1-p))
logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3....+bkXk
以上,p是存在感兴趣特征的概率。它选择的参数最大化观察样本值的可能性,而不是最小化误差平方和(如普通回归)。
现在,您可能会问,为什么要使用log函数?为简单起见,我们只是说这是复制步进函数的最佳数学方法之一。我可以详细介绍,但这会超出本文的目的。
来看使用python的scikit-learn完成的Logistic回归案例:
代码块
# ## 使用Scikit-learn的LogisticRegression完成测试案例# In[30]:import pandas as pdfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import accuracy_score# ### 读取训练数据和测试数据集# In[31]:train_data = pd.read_csv('train-data.csv')test_data = pd.read_csv('test-data.csv')print(train_data.head())# ### 打印训练数据和测试数据形状# In[32]:print('Shape of training data :',train_data.shape)print('Shape of testing data :',test_data.shape)# In[33]:#现在,我们需要预测测试数据中缺少的目标变量# target变量 - Survived#在训练数据上分离独立变量和目标变量train_x = train_data.drop(columns=['Survived'],axis=1)train_y = train_data['Survived']#在测试数据上分离独立变量和目标变量test_x = test_data.drop(columns=['Survived'],axis=1)test_y = test_data['Survived']model = LogisticRegression(solver='liblinear')model.fit(train_x,train_y)# In[34]:#训练模型的系数print('Coefficient of model :', model.coef_)#拦截模型print('Intercept of model',model.intercept_)# In[35]:# 预测训练数据集predict_train = model.predict(train_x)# 训练数据集得分accuracy_train = accuracy_score(train_y,predict_train)print('accuracy_score on train dataset : ', accuracy_train)# In[36]:# 预测测试数据集predict_test = model.predict(test_x)# 测试数据集得分accuracy_test = accuracy_score(test_y,predict_test)print('accuracy_score on test dataset : ', accuracy_test)
到此,相信大家对"python Logistic回归怎么实现"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
数据
变量
测试
训练
概率
函数
目标
结果
兴趣
内容
得分
数学
方法
朋友
案例
模型
要么
问题
学习
独立
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
计算机网络安全初级
苏州科技城 互联网企业
浪漫跑车之旅7无法连接服务器
软件开发在什么岗位好
服务器负责
如何提高网络安全英语
服务器怎么买 有什么用
查电脑数据库版本号
如何加载sybase数据库
西安瑞士互联网科技
深圳哼哈网络技术有限公司
网络安全设置为开放
企业在网络安全上存在的威胁
软件工程师数据库
服务器只开80 ipsec
区块链云服务器安全吗
新建网络安全实训室的立项报告
刘建上海软件开发
错误提示无法解析服务器
教师年龄偏大对网络技术
数据库映射和匹配
浪漫跑车之旅7无法连接服务器
服务器负责
快速建立一个数据库
探访网络安全科技馆
宝塔面板服务器8888端口
古画数据库
网络安全存在的问题及原因
适用的内网网络安全防护
益阳正规软件开发中介