千家信息网

.Net中如何使用Parallel

发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,今天给大家介绍一下.Net中如何使用Parallel。文章的内容小编觉得不错,现在给大家分享一下,觉得有需要的朋友可以了解一下,希望对大家有所帮助,下面跟着小编的思路一起来阅读吧。一、理解硬件线程和软
千家信息网最后更新 2025年01月20日.Net中如何使用Parallel

今天给大家介绍一下.Net中如何使用Parallel。文章的内容小编觉得不错,现在给大家分享一下,觉得有需要的朋友可以了解一下,希望对大家有所帮助,下面跟着小编的思路一起来阅读吧。

一、理解硬件线程和软件线程

多核处理器带有一个以上的物理内核--物理内核是真正的独立处理单元,多个物理内核使得多条指令能够同时并行运行。硬件线程也称为逻辑内核,一个物理内 核可以使用超线程技术提供多个硬件线程。所以一个硬件线程并不代表一个物理内核;Windows中每个运行的程序都是一个进程,每一个进程都会创建并运行 一个或多个线程,这些线程称为软件线程。硬件线程就像是一条泳道,而软件线程就是在其中游泳的人。

二、并行场合

.Net Framework4 引入了新的Task Parallel Library(任务并行库,TPL),它支持数据并行、任务并行和流水线。让开发人员应付不同的并行场合。

  • 数据并行:有大量数据需要处理,并且必须对每一份数据执行同样的操作。比如通过256bit的密钥对100个Unicode字符串进行AES算法加密。

  • 任务并行:通过任务并发运行不同的操作。例如生成文件散列码,加密字符串,创建缩略图。

  • 流水线:这是任务并行和数据并行的结合体。

TPL引入了System.Threading.Tasks ,主类是Task,这个类表示一个异步的并发的操作,然而我们不一定要使用Task类的实例,可以使用Parallel静态类。它提供了 Parallel.Invoke, Parallel.For Parallel.Forecah 三个方法。

三、Parallel.Invoke

试图让很多方法并行运行的最简单的方法就是使用Parallel类的Invoke方法。例如有四个方法:

  • WatchMovie

  • HaveDinner

  • ReadBook

  • WriteBlog

通过下面的代码就可以使用并行。

System.Threading.Tasks.Parallel.Invoke(WatchMovie, HaveDinner, ReadBook, WriteBlog);

这段代码会创建指向每一个方法的委托。Invoke方法接受一个Action的参数组。

1

public static void Invoke(params Action[] actions);

用lambda表达式或匿名委托可以达到同样的效果。

System.Threading.Tasks.Parallel.Invoke(() => WatchMovie(), () => HaveDinner(), () => ReadBook(), delegate() { WriteBlog(); });

1.没有特定的执行顺序。

Parallel.Invoke方法只有在4个方法全部完成之后才会返回。它至少需要4个硬件线程才足以让这4个方法并发运行。但并不保证这4个方法能够同时启动运行,如果一个或者多个内核处于繁忙状态,那么底层的调度逻辑可能会延迟某些方法的初始化执行。

给方法加上延时,就可以看到必须等待最长的方法执行完成才回到主方法。

static void Main(string[] args)         {             System.Threading.Tasks.Parallel.Invoke(WatchMovie, HaveDinner, ReadBook,                 WriteBlog);             Console.WriteLine("执行完成");             Console.ReadKey();         }          static void WatchMovie()         {             Thread.Sleep(5000);             Console.WriteLine("看电影");         }         static void HaveDinner()         {             Thread.Sleep(1000);             Console.WriteLine("吃晚饭");         }         static void ReadBook()         {             Thread.Sleep(2000);             Console.WriteLine("读书");         }         static void WriteBlog()         {             Thread.Sleep(3000);             Console.WriteLine("写博客");         }

这样会造成很多逻辑内核处于长时间闲置状态。

四、Parallel.For

Parallel.For为固定数目的独立For循环迭代提供了负载均衡 (即将工作分发到不同的任务中执行,这样所有的任务在大部分时间都可以保持繁忙) 的并行执行。从而能尽可能地充分利用所有的可用的内核。

我们比较下下面两个方法,一个使用For循环,一个使用Parallel.For 都是生成密钥在转换为十六进制字符串。

private static void GenerateAESKeys()         {             var sw = Stopwatch.StartNew();             for (int i = 0; i < NUM_AES_KEYS; i++)             {                 var aesM = new AesManaged();                 aesM.GenerateKey();                 byte[] result = aesM.Key;                 string hexStr = ConverToHexString(result);             }             Console.WriteLine("AES:"+sw.Elapsed.ToString());         }   private static void ParallelGenerateAESKeys()         {             var sw = Stopwatch.StartNew();             System.Threading.Tasks.Parallel.For(1, NUM_AES_KEYS + 1, (int i) =>             {                 var aesM = new AesManaged();                 aesM.GenerateKey();                 byte[] result = aesM.Key;                 string hexStr = ConverToHexString(result);             });              Console.WriteLine("Parallel_AES:" + sw.Elapsed.ToString());         }

private static int NUM_AES_KEYS = 100000;
static void Main(string[] args)
{
Console.WriteLine("执行"+NUM_AES_KEYS+"次:"); GenerateAESKeys();
ParallelGenerateAESKeys();
Console.ReadKey();
}

执行1000000次

这里并行的时间是串行的一半。

五、Parallel.ForEach

在Parallel.For中,有时候对既有循环进行优化可能会是一个非常复杂的任务。Parallel.ForEach为固定数目的独立For Each循环迭代提供了负载均衡的并行执行,且支持自定义分区器,让使用者可以完全掌握数据分发。实质就是将所有要处理的数据区分为多个部分,然后并行运 行这些串行循环。

修改上面的代码:

System.Threading.Tasks.Parallel.ForEach(Partitioner.Create(1, NUM_AES_KEYS + 1), range =>             {                 var aesM = new AesManaged();                 Console.WriteLine("AES Range({0},{1} 循环开始时间:{2})",range.Item1,range.Item2,DateTime.Now.TimeOfDay);                  for (int i = range.Item1; i < range.Item2; i++)                 {                     aesM.GenerateKey();                     byte[] result = aesM.Key;                     string hexStr = ConverToHexString(result);                 }                 Console.WriteLine("AES:"+sw.Elapsed.ToString());             });

从执行结果可以看出,分了13个段执行的。

第二次执行还是13个段。速度上稍微有差异。开始没有指定分区数,Partitioner.Create使用的是内置默认值。

而且我们发现这些分区并不是同时执行的,大致是分了三个时间段执行。而且执行顺序是不同的。总的时间和Parallel.For的方法差不多。

public static ParallelLoopResult ForEach(Partitioner source, Action body)

Parallel.ForEach方法定义了source和Body两个参数。source是指分区器。提供了分解为多个分区的数据源。body是 要调用的委托。它接受每一个已定义的分区作为参数。一共有20多个重载,在上面的例子中,分区的类型为Tuple,是一个 二元组类型。此外,返回一个ParallelLoopResult的值。

Partitioner.Create 创建分区是根据逻辑内核数及其他因素决定。

public static OrderablePartitioner> Create(int fromInclusive, int toExclusive)     {       int num = 3;       if (toExclusive <= fromInclusive)         throw new ArgumentOutOfRangeException("toExclusive");       int rangeSize = (toExclusive - fromInclusive) / (PlatformHelper.ProcessorCount * num);       if (rangeSize == 0)         rangeSize = 1;       return Partitioner.Create>(Partitioner.CreateRanges(fromInclusive, toExclusive, rangeSize), EnumerablePartitionerOptions.NoBuffering);     }

因此我们可以修改分区数目,rangesize大致为250000左右。也就是说我的逻辑内核是4.

var rangesize = (int) (NUM_AES_KEYS/Environment.ProcessorCount) + 1;
System.Threading.Tasks.Parallel.ForEach(Partitioner.Create(1, NUM_AES_KEYS + 1,rangesize), range =>

再次执行:

分区变成了四个,时间上没有多大差别(***个时间是串行时间)。我们看见这四个分区几乎是同时执行的。大部分情况下,TPL在幕后使用的负载均衡机制都是非常高效的,然而对分区的控制便于使用者对自己的工作负载进行分析,来改进整体的性能。

Parallel.ForEach也能对IEnumerable集合进行重构。Enumerable.Range生产了序列化的数目。但这样就没有上面的分区效果。

private static void ParallelForEachGenerateMD5HasHes()         {             var sw = Stopwatch.StartNew();             System.Threading.Tasks.Parallel.ForEach(Enumerable.Range(1, NUM_AES_KEYS), number =>             {                 var md5M = MD5.Create();                 byte[] data = Encoding.Unicode.GetBytes(Environment.UserName + number);                 byte[] result = md5M.ComputeHash(data);                 string hexString = ConverToHexString(result);             });             Console.WriteLine("MD5:"+sw.Elapsed.ToString());         }

六、从循环中退出

和串行运行中的break不同,ParallelLoopState 提供了两个方法用于停止Parallel.For 和 Parallel.ForEach的执行。

  • Break:让循环在执行了当前迭代后尽快停止执行。比如执行到100了,那么循环会处理掉所有小于100的迭代。

  • Stop:让循环尽快停止执行。如果执行到了100的迭代,那不能保证处理完所有小于100的迭代。

修改上面的方法:执行3秒后退出。

private static void ParallelLoopResult(ParallelLoopResult loopResult)         {             string text;             if (loopResult.IsCompleted)             {                 text = "循环完成";             }             else             {                 if (loopResult.LowestBreakIteration.HasValue)                 {                     text = "Break终止";                 }                 else                 {                     text = "Stop 终止";                 }             }             Console.WriteLine(text);         }           private static void ParallelForEachGenerateMD5HasHesBreak()         {             var sw = Stopwatch.StartNew();             var loopresult= System.Threading.Tasks.Parallel.ForEach(Enumerable.Range(1, NUM_AES_KEYS), (int number,ParallelLoopState loopState) =>             {                 var md5M = MD5.Create();                 byte[] data = Encoding.Unicode.GetBytes(Environment.UserName + number);                 byte[] result = md5M.ComputeHash(data);                 string hexString = ConverToHexString(result);                 if (sw.Elapsed.Seconds > 3)                 {                     loopState.Stop();                 }             });             ParallelLoopResult(loopresult);             Console.WriteLine("MD5:" + sw.Elapsed);         }

七、捕捉并行循环中发生的异常。

当并行迭代中调用的委托抛出异常,这个异常没有在委托中被捕获到时,就会变成一组异常,新的System.AggregateException负责处理这一组异常。

private static void ParallelForEachGenerateMD5HasHesException()         {             var sw = Stopwatch.StartNew();             var loopresult = new ParallelLoopResult();             try             {                 loopresult = System.Threading.Tasks.Parallel.ForEach(Enumerable.Range(1, NUM_AES_KEYS), (number, loopState) =>                 {                     var md5M = MD5.Create();                     byte[] data = Encoding.Unicode.GetBytes(Environment.UserName + number);                     byte[] result = md5M.ComputeHash(data);                     string hexString = ConverToHexString(result);                     if (sw.Elapsed.Seconds > 3)                     {                         throw new TimeoutException("执行超过三秒");                     }                 });             }             catch (AggregateException ex)             {                 foreach (var innerEx in  ex.InnerExceptions)                 {                     Console.WriteLine(innerEx.ToString());                 }             }                         ParallelLoopResult(loopresult);             Console.WriteLine("MD5:" + sw.Elapsed);         }

结果:

异常出现了好几次。

八、指定并行度。

TPL的方法总会试图利用所有可用的逻辑内核来实现***的结果,但有时候你并不希望在并行循环中使用所有的内核。比如你需要留出一个不参与并行计算 的内核,来创建能够响应用户的应用程序,而且这个内核需要帮助你运行代码中的其他部分。这个时候一种好的解决方法就是指定***并行度。

这需要创建一个ParallelOptions的实例,设置MaxDegreeOfParallelism的值。

private static void ParallelMaxDegree(int maxDegree)         {             var parallelOptions = new ParallelOptions();             parallelOptions.MaxDegreeOfParallelism = maxDegree;              var sw = Stopwatch.StartNew();             System.Threading.Tasks.Parallel.For(1, NUM_AES_KEYS + 1, parallelOptions, (int i) =>             {                 var aesM = new AesManaged();                 aesM.GenerateKey();                 byte[] result = aesM.Key;                 string hexStr = ConverToHexString(result);             });             Console.WriteLine("AES:" + sw.Elapsed.ToString());         }

调用:如果在四核微处理器上运行,那么将使用3个内核。

ParallelMaxDegree(Environment.ProcessorCount - 1);

时间上大致慢了点(第一次Parallel.For 3.18s),但可以腾出一个内核来处理其他的事情。

以上就是.Net中如何使用Parallel的全部内容了,更多与.Net中如何使用Parallel相关的内容可以搜索之前的文章或者浏览下面的文章进行学习哈!相信小编会给大家增添更多知识,希望大家能够支持一下!

0