千家信息网

如何深度解析Pytorch中的UNet模型

发表于:2025-01-24 作者:千家信息网编辑
千家信息网最后更新 2025年01月24日,这篇文章给大家介绍如何深度解析Pytorch中的UNet模型,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。一、项目背景深度学习算法,无非就是我们解决一个问题的方法。选择什么样的网
千家信息网最后更新 2025年01月24日如何深度解析Pytorch中的UNet模型

这篇文章给大家介绍如何深度解析Pytorch中的UNet模型,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

一、项目背景

深度学习算法,无非就是我们解决一个问题的方法。选择什么样的网络去训练,进行什么样的预处理,采用什么Loss和优化方法,都是根据具体的任务而定的。

所以,让我们先看一下今天的任务。

没错,就是 UNet 论文中的经典任务:医学图像分割。

选择它作为今天的任务,就是因为简单,好上手。

简单描述一个这个任务:如动图所示,给一张细胞结构图,我们要把每个细胞互相分割开来。

这个训练数据只有30张,分辨率为512x512,这些图片是果蝇的电镜图。

好了,任务介绍完毕,开始准备训练模型。

二、UNet训练

想要训练一个深度学习模型,可以简单分为三个步骤:

  • 数据加载:数据怎么加载,标签怎么定义,用什么数据增强方法,都是这一步进行。

  • 模型选择:模型我们已经准备好了,就是该系列上篇文章讲到的 UNet 网络。

  • 算法选择:算法选择也就是我们选什么 loss ,用什么优化算法。

每个步骤说的比较笼统,我们结合今天的医学图像分割任务,展开说明。

1、数据加载

这一步,可以做很多事情,说白了,无非就是图片怎么加载,标签怎么定义,为了增加算法的鲁棒性或者增加数据集,可以做一些数据增强的操作。

既然是处理数据,那么我们先看下数据都是什么样的,再决定怎么处理。

数据已经备好,都在这里(Github):点击查看

如果 Github 下载速度慢,可以使用文末的百度链接下载数据集。

数据分为训练集和测试集,各30张,训练集有标签,测试集没有标签。

数据加载要做哪些处理,是根据任务和数据集而决定的,对于我们的分割任务,不用做太多处理,但由于数据量很少,仅30张,我们可以使用一些数据增强方法,来扩大我们的数据集。

Pytorch 给我们提供了一个方法,方便我们加载数据,我们可以使用这个框架,去加载我们的数据。看下伪代码:

# ================================================================== ##                Input pipeline for custom dataset                 ## ================================================================== ## You should build your custom dataset as below.class CustomDataset(torch.utils.data.Dataset):    def __init__(self):        # TODO        # 1. Initialize file paths or a list of file names.         pass    def __getitem__(self, index):        # TODO        # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).        # 2. Preprocess the data (e.g. torchvision.Transform).        # 3. Return a data pair (e.g. image and label).        pass    def __len__(self):        # You should change 0 to the total size of your dataset.        return 0 # You can then use the prebuilt data loader. custom_dataset = CustomDataset()train_loader = torch.utils.data.DataLoader(dataset=custom_dataset,                                           batch_size=64,                                            shuffle=True)

这是一个标准的模板,我们就使用这个模板,来加载数据,定义标签,以及进行数据增强。

创建一个dataset.py文件,编写代码如下:

import torchimport cv2import osimport globfrom torch.utils.data import Datasetimport randomclass ISBI_Loader(Dataset):    def __init__(self, data_path):        # 初始化函数,读取所有data_path下的图片        self.data_path = data_path        self.imgs_path = glob.glob(os.path.join(data_path, 'image/*.png'))    def augment(self, image, flipCode):        # 使用cv2.flip进行数据增强,filpCode为1水平翻转,0垂直翻转,-1水平+垂直翻转        flip = cv2.flip(image, flipCode)        return flip            def __getitem__(self, index):        # 根据index读取图片        image_path = self.imgs_path[index]        # 根据image_path生成label_path        label_path = image_path.replace('image', 'label')        # 读取训练图片和标签图片        image = cv2.imread(image_path)        label = cv2.imread(label_path)        # 将数据转为单通道的图片        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)        label = cv2.cvtColor(label, cv2.COLOR_BGR2GRAY)        image = image.reshape(1, image.shape[0], image.shape[1])        label = label.reshape(1, label.shape[0], label.shape[1])        # 处理标签,将像素值为255的改为1        if label.max() > 1:            label = label / 255        # 随机进行数据增强,为2时不做处理        flipCode = random.choice([-1, 0, 1, 2])        if flipCode != 2:            image = self.augment(image, flipCode)            label = self.augment(label, flipCode)        return image, label    def __len__(self):        # 返回训练集大小        return len(self.imgs_path)    if __name__ == "__main__":    isbi_dataset = ISBI_Loader("data/train/")    print("数据个数:", len(isbi_dataset))    train_loader = torch.utils.data.DataLoader(dataset=isbi_dataset,                                               batch_size=2,                                                shuffle=True)    for image, label in train_loader:        print(image.shape)

运行代码,你可以看到如下结果:

解释一下代码:

__init__函数是这个类的初始化函数,根据指定的图片路径,读取所有图片数据,存放到self.imgs_path列表中。

__len__函数可以返回数据的多少,这个类实例化后,通过len()函数调用。

__getitem__函数是数据获取函数,在这个函数里你可以写数据怎么读,怎么处理,并且可以一些数据预处理、数据增强都可以在这里进行。我这里的处理很简单,只是将图片读取,并处理成单通道图片。同时,因为 label 的图片像素点是0和255,因此需要除以255,变成0和1。同时,随机进行了数据增强。

augment函数是定义的数据增强函数,怎么处理都行,我这里只是进行了简单的旋转操作。

在这个类中,你不用进行一些打乱数据集的操作,也不用管怎么按照 batchsize 读取数据。因为实例化这个类后,我们可以用 torch.utils.data.DataLoader 方法指定 batchsize 的大小,决定是否打乱数据。

Pytorch 提供给给我们的 DataLoader 很强大,我们甚至可以指定使用多少个进程加载数据,数据是否加载到 CUDA 内存中等高级用法,本文不涉及,就不再展开讲解了。

2、模型选择

模型我们已经选择完了,就用上篇文章《Pytorch深度学习实战教程(二):UNet语义分割网络》讲解的 UNet 网络结构。

但是我们需要对网络进行微调,完全按照论文的结构,模型输出的尺寸会稍微小于图片输入的尺寸,如果使用论文的网络结构需要在结果输出后,做一个 resize 操作。为了省去这一步,我们可以修改网络,使网络的输出尺寸正好等于图片的输入尺寸。

创建unet_parts.py文件,编写如下代码:

""" Parts of the U-Net model """"""https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_parts.py"""import torchimport torch.nn as nnimport torch.nn.functional as Fclass DoubleConv(nn.Module):    """(convolution => [BN] => ReLU) * 2"""    def __init__(self, in_channels, out_channels):        super().__init__()        self.double_conv = nn.Sequential(            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),            nn.BatchNorm2d(out_channels),            nn.ReLU(inplace=True),            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),            nn.BatchNorm2d(out_channels),            nn.ReLU(inplace=True)        )    def forward(self, x):        return self.double_conv(x)class Down(nn.Module):    """Downscaling with maxpool then double conv"""    def __init__(self, in_channels, out_channels):        super().__init__()        self.maxpool_conv = nn.Sequential(            nn.MaxPool2d(2),            DoubleConv(in_channels, out_channels)        )    def forward(self, x):        return self.maxpool_conv(x)class Up(nn.Module):    """Upscaling then double conv"""    def __init__(self, in_channels, out_channels, bilinear=True):        super().__init__()        # if bilinear, use the normal convolutions to reduce the number of channels        if bilinear:            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)        else:            self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2)        self.conv = DoubleConv(in_channels, out_channels)    def forward(self, x1, x2):        x1 = self.up(x1)        # input is CHW        diffY = torch.tensor([x2.size()[2] - x1.size()[2]])        diffX = torch.tensor([x2.size()[3] - x1.size()[3]])        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,                        diffY // 2, diffY - diffY // 2])        x = torch.cat([x2, x1], dim=1)        return self.conv(x)class OutConv(nn.Module):    def __init__(self, in_channels, out_channels):        super(OutConv, self).__init__()        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)    def forward(self, x):        return self.conv(x)

创建unet_model.py文件,编写如下代码:

""" Full assembly of the parts to form the complete network """"""Refer https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py"""import torch.nn.functional as Ffrom .unet_parts import *class UNet(nn.Module):    def __init__(self, n_channels, n_classes, bilinear=True):        super(UNet, self).__init__()        self.n_channels = n_channels        self.n_classes = n_classes        self.bilinear = bilinear        self.inc = DoubleConv(n_channels, 64)        self.down1 = Down(64, 128)        self.down2 = Down(128, 256)        self.down3 = Down(256, 512)        self.down4 = Down(512, 512)        self.up1 = Up(1024, 256, bilinear)        self.up2 = Up(512, 128, bilinear)        self.up3 = Up(256, 64, bilinear)        self.up4 = Up(128, 64, bilinear)        self.outc = OutConv(64, n_classes)    def forward(self, x):        x1 = self.inc(x)        x2 = self.down1(x1)        x3 = self.down2(x2)        x4 = self.down3(x3)        x5 = self.down4(x4)        x = self.up1(x5, x4)        x = self.up2(x, x3)        x = self.up3(x, x2)        x = self.up4(x, x1)        logits = self.outc(x)        return logitsif __name__ == '__main__':    net = UNet(n_channels=3, n_classes=1)    print(net)

这样调整过后,网络的输出尺寸就与图片的输入尺寸相同了。

3、算法选择

选择什么 Loss 很重要,Loss 选择的好坏,都会影响算法拟合数据的效果。

选择什么 Loss 也是根据任务而决定的。我们今天的任务,只需要分割出细胞边缘,也就是一个很简单的二分类任务,所以我们可以使用 BCEWithLogitsLoss。

啥是 BCEWithLogitsLoss?BCEWithLogitsLoss 是 Pytorch 提供的用来计算二分类交叉熵的函数。

它的公式是:

看过我机器学习系列教程的朋友,对这个公式一定不陌生,它就是 Logistic 回归的损失函数。它利用的是 Sigmoid 函数阈值在[0,1]这个特性来进行分类的。

具体的公式推导,可以看我的机器学习系列教程《机器学习实战教程(六):Logistic回归基础篇之梯度上升算法》,这里就不再累述。

目标函数,也就是 Loss 确定好了,怎么去优化这个目标呢?

最简单的方法就是,我们耳熟能详的梯度下降算法,逐渐逼近局部的极值。

但是这种简单的优化算法,求解速度慢,也就是想找到最优解,费劲儿。

各种优化算法,本质上其实都是梯度下降,例如最常规的 SGD,就是基于梯度下降改进的随机梯度下降算法,Momentum 就是引入了动量的 SGD,以指数衰减的形式累计历史梯度。

除了这些最基本的优化算法,还有自适应参数的优化算法。这类算法最大的特点就是,每个参数有不同的学习率,在整个学习过程中自动适应这些学习率,从而达到更好的收敛效果。

本文就是选择了一种自适应的优化算法 RMSProp。

由于篇幅有限,这里就不再扩展,讲解这个优化算法单写一篇都不够,要弄懂 RMSProp,你得先知道什么是 AdaGrad,因为 RMSProp 是基于 AdaGrad 的改进。

比 RMSProp 更高级的优化算法也有,比如大名鼎鼎的 Adam,它可以看做是修正后的Momentum+RMSProp 算法。

总之,对于初学者,你只要知道 RMSProp 是一种自适应的优化算法,比较高级就行了。

下面,我们就可以开始写训练UNet的代码了,创建 train.py 编写如下代码:

from model.unet_model import UNetfrom utils.dataset import ISBI_Loaderfrom torch import optimimport torch.nn as nnimport torchdef train_net(net, device, data_path, epochs=40, batch_size=1, lr=0.00001):    # 加载训练集    isbi_dataset = ISBI_Loader(data_path)    train_loader = torch.utils.data.DataLoader(dataset=isbi_dataset,                                               batch_size=batch_size,                                                shuffle=True)    # 定义RMSprop算法    optimizer = optim.RMSprop(net.parameters(), lr=lr, weight_decay=1e-8, momentum=0.9)    # 定义Loss算法    criterion = nn.BCEWithLogitsLoss()    # best_loss统计,初始化为正无穷    best_loss = float('inf')    # 训练epochs次    for epoch in range(epochs):        # 训练模式        net.train()        # 按照batch_size开始训练        for image, label in train_loader:            optimizer.zero_grad()            # 将数据拷贝到device中            image = image.to(device=device, dtype=torch.float32)            label = label.to(device=device, dtype=torch.float32)            # 使用网络参数,输出预测结果            pred = net(image)            # 计算loss            loss = criterion(pred, label)            print('Loss/train', loss.item())            # 保存loss值最小的网络参数            if loss < best_loss:                best_loss = loss                torch.save(net.state_dict(), 'best_model.pth')            # 更新参数            loss.backward()            optimizer.step()if __name__ == "__main__":    # 选择设备,有cuda用cuda,没有就用cpu    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')    # 加载网络,图片单通道1,分类为1。    net = UNet(n_channels=1, n_classes=1)    # 将网络拷贝到deivce中    net.to(device=device)    # 指定训练集地址,开始训练    data_path = "data/train/"    train_net(net, device, data_path)

为了让工程更加清晰简洁,我们创建一个 model 文件夹,里面放模型相关的代码,也就是我们的网络结构代码,unet_parts.py 和 unet_model.py。

创建一个 utils 文件夹,里面放工具相关的代码,比如数据加载工具dataset.py。

这种模块化的管理,大大提高了代码的可维护性。

train.py 放在工程根目录即可,简单解释下代码。

由于数据就30张,我们就不分训练集和验证集了,我们保存训练集 loss 值最低的网络参数作为最佳模型参数。

如果都没有问题,你可以看到 loss 正在逐渐收敛。

三、预测

模型训练好了,我们可以用它在测试集上看下效果。

在工程根目录创建 predict.py 文件,编写如下代码:

import globimport numpy as npimport torchimport osimport cv2from model.unet_model import UNetif __name__ == "__main__":    # 选择设备,有cuda用cuda,没有就用cpu    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')    # 加载网络,图片单通道,分类为1。    net = UNet(n_channels=1, n_classes=1)    # 将网络拷贝到deivce中    net.to(device=device)    # 加载模型参数    net.load_state_dict(torch.load('best_model.pth', map_location=device))    # 测试模式    net.eval()    # 读取所有图片路径    tests_path = glob.glob('data/test/*.png')    # 遍历所有图片    for test_path in tests_path:        # 保存结果地址        save_res_path = test_path.split('.')[0] + '_res.png'        # 读取图片        img = cv2.imread(test_path)        # 转为灰度图        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)        # 转为batch为1,通道为1,大小为512*512的数组        img = img.reshape(1, 1, img.shape[0], img.shape[1])        # 转为tensor        img_tensor = torch.from_numpy(img)        # 将tensor拷贝到device中,只用cpu就是拷贝到cpu中,用cuda就是拷贝到cuda中。        img_tensor = img_tensor.to(device=device, dtype=torch.float32)        # 预测        pred = net(img_tensor)        # 提取结果        pred = np.array(pred.data.cpu()[0])[0]        # 处理结果        pred[pred >= 0.5] = 255        pred[pred < 0.5] = 0        # 保存图片        cv2.imwrite(save_res_path, pred)

运行完后,你可以在data/test目录下,看到预测结果:

大功告成!

关于如何深度解析Pytorch中的UNet模型就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

0