千家信息网

pandas中如何使用append函数

发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,这篇文章主要介绍了pandas中如何使用append函数,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。appendappend主要用于
千家信息网最后更新 2025年01月20日pandas中如何使用append函数

这篇文章主要介绍了pandas中如何使用append函数,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

append

append主要用于追加数据,是比较简单直接的数据合并方式。

df.append(    other,    ignore_index: 'bool' = False,    verify_integrity: 'bool' = False,    sort: 'bool' = False,) -> 'DataFrame'

在函数方法中,各参数含义如下:

  • other: 用于追加的数据,可以是DataFrame或Series或组成的列表

  • ignore_index: 是否保留原有的索引

  • verify_integrity: 检测索引是否重复,如果为True则有重复索引会报错

  • sort: 并集合并方式下,对columns排序

接下来,我们就对该函数功能进行演示

基础追加

In [41]: df1.append(df2)Out[41]:   letter  number0      a       11      b       20      c       31      d       4In [42]: df1.append([df1,df2,df3])Out[42]:   letter  number animal0      a       1    NaN1      b       2    NaN0      a       1    NaN1      b       2    NaN0      c       3    NaN1      d       4    NaN0      c       3    cat1      d       4    dog

columns重置(不保留原有索引)

In [43]: df1.append([df1,df2,df3], ignore_index=True)Out[43]:   letter  number animal0      a       1    NaN1      b       2    NaN2      a       1    NaN3      b       2    NaN4      c       3    NaN5      d       4    NaN6      c       3    cat7      d       4    dog

检测重复

如果索引出现重复,则无法通过检测,会报错

In [44]: df1.append([df1,df2], verify_integrity=True)Traceback (most recent call last):...ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype='int64')

索引排序

In [46]: df1.append([df1,df2,df3], sort=True)Out[46]:   animal letter  number0    NaN      a       11    NaN      b       20    NaN      a       11    NaN      b       20    NaN      c       31    NaN      d       40    cat      c       31    dog      d       4

追加Series

In [49]: s = pd.Series({'letter':'s1','number':9})In [50]: sOut[50]: letter    s1number     9dtype: objectIn [51]: df1.append(s)Traceback (most recent call last):...TypeError: Can only append a Series if ignore_index=True or if the Series has a nameIn [53]: df1.append(s, ignore_index=True)Out[53]:   letter  number0      a       11      b       22     s1       9

追加字典

这个在爬虫的时候比较好使,每爬取一条数据就合并到DataFrame类似数据中存储起来

In [54]: dic = {'letter':'s1','number':9}In [55]: df1.append(dic, ignore_index=True)Out[55]:   letter  number0      a       11      b       22     s1       9

感谢你能够认真阅读完这篇文章,希望小编分享的"pandas中如何使用append函数"这篇文章对大家有帮助,同时也希望大家多多支持,关注行业资讯频道,更多相关知识等着你来学习!

0