千家信息网

PostgreSQL 源码解读(4)- 插入数据#3(heap_insert)

发表于:2025-02-02 作者:千家信息网编辑
千家信息网最后更新 2025年02月02日,本文简单介绍了PG插入数据部分的源码,这是第三部分,主要内容包括heap_insert函数的实现逻辑,该函数在源文件heapam.c中。一、基础信息heap_insert使用的数据结构、宏定义以及依赖
千家信息网最后更新 2025年02月02日PostgreSQL 源码解读(4)- 插入数据#3(heap_insert)

本文简单介绍了PG插入数据部分的源码,这是第三部分,主要内容包括heap_insert函数的实现逻辑,该函数在源文件heapam.c中。

一、基础信息

heap_insert使用的数据结构、宏定义以及依赖的函数等。
数据结构/宏定义

1、CommandId32bit无符号整型typedef uint32 CommandId;2、options整型,标记bits /* "options" flag bits for heap_insert */ #define HEAP_INSERT_SKIP_WAL    0x0001 #define HEAP_INSERT_SKIP_FSM    0x0002 #define HEAP_INSERT_FROZEN      0x0004 #define HEAP_INSERT_SPECULATIVE 0x00083、BulkInsertState批量插入状态指针  /*  * state for bulk inserts --- private to heapam.c and hio.c  *  * If current_buf isn't InvalidBuffer, then we are holding an extra pin  * on that buffer.  *  * "typedef struct BulkInsertStateData *BulkInsertState" is in heapam.h  */ typedef struct BulkInsertStateData {     BufferAccessStrategy strategy;  /* our BULKWRITE strategy object */     Buffer      current_buf;    /* current insertion target page */ }     BulkInsertStateData; typedef struct BulkInsertStateData *BulkInsertState;4、TransactionId32bit无符号整型 typedef uint32 TransactionId; typedef uint32 LocalTransactionId; typedef uint32 SubTransactionId;5、xl_heap_insert typedef struct xl_heap_insert {     OffsetNumber offnum;        /* inserted tuple's offset */     uint8       flags;     /* xl_heap_header & TUPLE DATA in backup block 0 */ } xl_heap_insert;  #define SizeOfHeapInsert    (offsetof(xl_heap_insert, flags) + sizeof(uint8))6、xl_heap_header typedef struct xl_heap_header {     uint16      t_infomask2;     uint16      t_infomask;     uint8       t_hoff; } xl_heap_header;  #define SizeOfHeapHeader    (offsetof(xl_heap_header, t_hoff) + sizeof(uint8))7、XLogRecPtr64bit无符号长整型 typedef uint64 XLogRecPtr;

依赖的函数
1、heap_prepare_insert

/* * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the * tuple header fields, assigns an OID, and toasts the tuple if necessary. * Returns a toasted version of the tuple if it was toasted, or the original * tuple if not. Note that in any case, the header fields are also set in * the original tuple. */static HeapTupleheap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid,                    CommandId cid, int options){    /*     * Parallel operations are required to be strictly read-only in a parallel     * worker.  Parallel inserts are not safe even in the leader in the     * general case, because group locking means that heavyweight locks for     * relation extension or GIN page locks will not conflict between members     * of a lock group, but we don't prohibit that case here because there are     * useful special cases that we can safely allow, such as CREATE TABLE AS.     */    //暂不支持并行操作    if (IsParallelWorker())        ereport(ERROR,                (errcode(ERRCODE_INVALID_TRANSACTION_STATE),                 errmsg("cannot insert tuples in a parallel worker")));    //设置Oid    if (relation->rd_rel->relhasoids)    {#ifdef NOT_USED        /* this is redundant with an Assert in HeapTupleSetOid */        Assert(tup->t_data->t_infomask & HEAP_HASOID);#endif        /*         * If the object id of this tuple has already been assigned, trust the         * caller.  There are a couple of ways this can happen.  At initial db         * creation, the backend program sets oids for tuples. When we define         * an index, we set the oid.  Finally, in the future, we may allow         * users to set their own object ids in order to support a persistent         * object store (objects need to contain pointers to one another).         */        if (!OidIsValid(HeapTupleGetOid(tup)))            HeapTupleSetOid(tup, GetNewOid(relation));    }    else    {        /* check there is not space for an OID */        Assert(!(tup->t_data->t_infomask & HEAP_HASOID));    }    //设置标记位t_infomask/t_infomask2    tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);//HEAP_XACT_MASK=0xFFF0,取反    tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);//HEAP2_XACT_MASK=0xE000,取反    tup->t_data->t_infomask |= HEAP_XMAX_INVALID;//插入数据,XMAX设置为invalid    HeapTupleHeaderSetXmin(tup->t_data, xid);//设置xmin为当前事务id    if (options & HEAP_INSERT_FROZEN)//冻结型插入(在事务id回卷时发生)        HeapTupleHeaderSetXminFrozen(tup->t_data);    //设置cid    HeapTupleHeaderSetCmin(tup->t_data, cid);    //设置xmax=0    HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */    //设置Oid    tup->t_tableOid = RelationGetRelid(relation);    /*     * If the new tuple is too big for storage or contains already toasted     * out-of-line attributes from some other relation, invoke the toaster.     */    if (relation->rd_rel->relkind != RELKIND_RELATION &&        relation->rd_rel->relkind != RELKIND_MATVIEW)    {        /* toast table entries should never be recursively toasted */        Assert(!HeapTupleHasExternal(tup));        return tup;    }    else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)        return toast_insert_or_update(relation, tup, NULL, options);    else        return tup;}

2、RelationGetBufferForTuple
稍长,请耐心阅读,如能读懂,必有收获

/*输入:    relation-数据表    len-需要的空间大小    otherBuffer-用于update场景,上一次pinned的buffer    options-处理选项    bistate-BulkInsert标记    vmbuffer-第1个vm(visibilitymap)    vmbuffer_other-用于update场景,上一次pinned的buffer对应的vm(visibilitymap)    注意:    otherBuffer这个参数让人觉得困惑,原因是PG的机制使然    Update时,不是原地更新,而是原数据保留(更新xmax),新数据插入    原数据&新数据如果在不同Block中,锁定Block的时候可能会出现Deadlock    举个例子:Session A更新表T的第一行,第一行在Block 0中,新数据存储在Block 2中              Session B更新表T的第二行,第二行在Block 0中,新数据存储在Block 2中              Block 0/2均要锁定才能完整实现Update操作:              如果Session A先锁定了Block 2,Session B先锁定了Block 0,              然后Session A尝试锁定Block 0,Session B尝试锁定Block 2,这时候就会出现死锁              为了避免这种情况,PG规定锁定时,同一个Relation,按Block的编号顺序锁定,              如需要锁定0和2,那必须先锁定Block 0,再锁定2输出:    为Tuple分配的Buffer附:Pinned buffers:means buffers are currently being used,it should not be flushed out.*/BufferRelationGetBufferForTuple(Relation relation, Size len,                          Buffer otherBuffer, int options,                          BulkInsertState bistate,                          Buffer *vmbuffer, Buffer *vmbuffer_other){    bool        use_fsm = !(options & HEAP_INSERT_SKIP_FSM);//是否使用FSM寻找空闲空间    Buffer      buffer = InvalidBuffer;//    Page        page;//    Size        pageFreeSpace = 0,//page空闲空间                saveFreeSpace = 0;//page需要预留的空间    BlockNumber targetBlock,//目标Block                otherBlock;//上一次pinned的buffer对应的Block    bool        needLock;//是否需要上锁    len = MAXALIGN(len);        /* be conservative *///大小对齐    /* Bulk insert is not supported for updates, only inserts. */    Assert(otherBuffer == InvalidBuffer || !bistate);//otherBuffer有效,说明是update操作,不支持bi(BulkInsert)    /*     * If we're gonna fail for oversize tuple, do it right away     */    if (len > MaxHeapTupleSize)        ereport(ERROR,                (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),                 errmsg("row is too big: size %zu, maximum size %zu",                        len, MaxHeapTupleSize)));    /* Compute desired extra freespace due to fillfactor option */    //获取预留空间    saveFreeSpace = RelationGetTargetPageFreeSpace(relation,                                                   HEAP_DEFAULT_FILLFACTOR);    //update操作,获取上次pinned buffer对应的Block    if (otherBuffer != InvalidBuffer)        otherBlock = BufferGetBlockNumber(otherBuffer);    else        otherBlock = InvalidBlockNumber;    /* just to keep compiler quiet */    /*     * We first try to put the tuple on the same page we last inserted a tuple     * on, as cached in the BulkInsertState or relcache entry.  If that     * doesn't work, we ask the Free Space Map to locate a suitable page.     * Since the FSM's info might be out of date, we have to be prepared to     * loop around and retry multiple times. (To insure this isn't an infinite     * loop, we must update the FSM with the correct amount of free space on     * each page that proves not to be suitable.)  If the FSM has no record of     * a page with enough free space, we give up and extend the relation.     *     * When use_fsm is false, we either put the tuple onto the existing target     * page or extend the relation.     */    if (len + saveFreeSpace > MaxHeapTupleSize)    {        //如果需要的大小+预留空间大于可容纳的最大Tuple大小,不使用FSM,扩展后再尝试        /* can't fit, don't bother asking FSM */        targetBlock = InvalidBlockNumber;        use_fsm = false;    }    else if (bistate && bistate->current_buf != InvalidBuffer)//BulkInsert模式        targetBlock = BufferGetBlockNumber(bistate->current_buf);    else        targetBlock = RelationGetTargetBlock(relation);//普通Insert模式    if (targetBlock == InvalidBlockNumber && use_fsm)//还没有找到合适的BlockNumber,需要使用FSM    {        /*         * We have no cached target page, so ask the FSM for an initial         * target.         */        //使用FSM申请空闲空间=len + saveFreeSpace的块        targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);        /*         * If the FSM knows nothing of the rel, try the last page before we         * give up and extend.  This avoids one-tuple-per-page syndrome during         * bootstrapping or in a recently-started system.         */        //申请不到,使用最后一个块,否则扩展或者放弃        if (targetBlock == InvalidBlockNumber)        {            BlockNumber nblocks = RelationGetNumberOfBlocks(relation);            if (nblocks > 0)                targetBlock = nblocks - 1;        }    }loop:    while (targetBlock != InvalidBlockNumber)//已成功获取插入数据的块号    {        /*         * Read and exclusive-lock the target block, as well as the other         * block if one was given, taking suitable care with lock ordering and         * the possibility they are the same block.         *         * If the page-level all-visible flag is set, caller will need to         * clear both that and the corresponding visibility map bit.  However,         * by the time we return, we'll have x-locked the buffer, and we don't         * want to do any I/O while in that state.  So we check the bit here         * before taking the lock, and pin the page if it appears necessary.         * Checking without the lock creates a risk of getting the wrong         * answer, so we'll have to recheck after acquiring the lock.         */        if (otherBuffer == InvalidBuffer)//非Update操作        {            /* easy case */            buffer = ReadBufferBI(relation, targetBlock, bistate);//获取Buffer            if (PageIsAllVisible(BufferGetPage(buffer)))                //如果Page全局可见,那么把Page Pin在内存中(Pin的意思是固定/保留)                visibilitymap_pin(relation, targetBlock, vmbuffer);            LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);//锁定buffer        }        else if (otherBlock == targetBlock)//Update操作,新记录跟原记录在同一个Block中        {            /* also easy case */            buffer = otherBuffer;            if (PageIsAllVisible(BufferGetPage(buffer)))                visibilitymap_pin(relation, targetBlock, vmbuffer);            LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);        }        else if (otherBlock < targetBlock)//Update操作,原记录所在的Block < 新记录的Block        {            /* lock other buffer first */            buffer = ReadBuffer(relation, targetBlock);            if (PageIsAllVisible(BufferGetPage(buffer)))                visibilitymap_pin(relation, targetBlock, vmbuffer);            LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);//优先锁定BlockNumber小的那个            LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);        }        else//Update操作,原记录所在的Block > 新记录的Block        {            /* lock target buffer first */            buffer = ReadBuffer(relation, targetBlock);            if (PageIsAllVisible(BufferGetPage(buffer)))                visibilitymap_pin(relation, targetBlock, vmbuffer);            LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);//优先锁定BlockNumber小的那个            LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);        }        /*         * We now have the target page (and the other buffer, if any) pinned         * and locked.  However, since our initial PageIsAllVisible checks         * were performed before acquiring the lock, the results might now be         * out of date, either for the selected victim buffer, or for the         * other buffer passed by the caller.  In that case, we'll need to         * give up our locks, go get the pin(s) we failed to get earlier, and         * re-lock.  That's pretty painful, but hopefully shouldn't happen         * often.         *         * Note that there's a small possibility that we didn't pin the page         * above but still have the correct page pinned anyway, either because         * we've already made a previous pass through this loop, or because         * caller passed us the right page anyway.         *         * Note also that it's possible that by the time we get the pin and         * retake the buffer locks, the visibility map bit will have been         * cleared by some other backend anyway.  In that case, we'll have         * done a bit of extra work for no gain, but there's no real harm         * done.         */        if (otherBuffer == InvalidBuffer || buffer <= otherBuffer)            GetVisibilityMapPins(relation, buffer, otherBuffer,                                 targetBlock, otherBlock, vmbuffer,                                 vmbuffer_other);//Pin VM在内存中        else            GetVisibilityMapPins(relation, otherBuffer, buffer,                                 otherBlock, targetBlock, vmbuffer_other,                                 vmbuffer);//Pin VM在内存中        /*         * Now we can check to see if there's enough free space here. If so,         * we're done.         */        page = BufferGetPage(buffer);        pageFreeSpace = PageGetHeapFreeSpace(page);        if (len + saveFreeSpace <= pageFreeSpace)//有足够的空间存储数据,返回此Buffer        {            /* use this page as future insert target, too */            RelationSetTargetBlock(relation, targetBlock);            return buffer;        }        /*         * Not enough space, so we must give up our page locks and pin (if         * any) and prepare to look elsewhere.  We don't care which order we         * unlock the two buffers in, so this can be slightly simpler than the         * code above.         */        LockBuffer(buffer, BUFFER_LOCK_UNLOCK);        if (otherBuffer == InvalidBuffer)            ReleaseBuffer(buffer);        else if (otherBlock != targetBlock)        {            LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);            ReleaseBuffer(buffer);        }        /* Without FSM, always fall out of the loop and extend */        if (!use_fsm)//不使用FSM定位空闲空间,跳出循环,执行扩展            break;        /*         * Update FSM as to condition of this page, and ask for another page         * to try.         */        //使用FSM获取下一个备选的Block        //注意:如果全部扫描后发现没有满足条件的Block,targetBlock = InvalidBlockNumber,跳出循环        targetBlock = RecordAndGetPageWithFreeSpace(relation,                                                    targetBlock,                                                    pageFreeSpace,                                                    len + saveFreeSpace);    }        //没有获取满足条件的Block,扩展表    /*     * Have to extend the relation.     *     * We have to use a lock to ensure no one else is extending the rel at the     * same time, else we will both try to initialize the same new page.  We     * can skip locking for new or temp relations, however, since no one else     * could be accessing them.     */    needLock = !RELATION_IS_LOCAL(relation);//新创建的数据表或者临时表,无需Lock    /*     * If we need the lock but are not able to acquire it immediately, we'll     * consider extending the relation by multiple blocks at a time to manage     * contention on the relation extension lock.  However, this only makes     * sense if we're using the FSM; otherwise, there's no point.     */    if (needLock)//需要锁定    {        if (!use_fsm)            LockRelationForExtension(relation, ExclusiveLock);        else if (!ConditionalLockRelationForExtension(relation, ExclusiveLock))        {            /* Couldn't get the lock immediately; wait for it. */            LockRelationForExtension(relation, ExclusiveLock);            /*             * Check if some other backend has extended a block for us while             * we were waiting on the lock.             */            //如有其它进程扩展了数据表,那么可以成功获取满足条件的targetBlock            targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);            /*             * If some other waiter has already extended the relation, we             * don't need to do so; just use the existing freespace.             */            if (targetBlock != InvalidBlockNumber)            {                UnlockRelationForExtension(relation, ExclusiveLock);                goto loop;            }            /* Time to bulk-extend. */            //其它进程没有扩展            //Just extend it!            RelationAddExtraBlocks(relation, bistate);        }    }    /*     * In addition to whatever extension we performed above, we always add at     * least one block to satisfy our own request.     *     * XXX This does an lseek - rather expensive - but at the moment it is the     * only way to accurately determine how many blocks are in a relation.  Is     * it worth keeping an accurate file length in shared memory someplace,     * rather than relying on the kernel to do it for us?     */    //扩展表后,New Page!    buffer = ReadBufferBI(relation, P_NEW, bistate);    /*     * We can be certain that locking the otherBuffer first is OK, since it     * must have a lower page number.     */    if (otherBuffer != InvalidBuffer)        LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);//otherBuffer的顺序一定在扩展的Block之后,Lock it!    /*     * Now acquire lock on the new page.     */    LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);//锁定New Page    /*     * Release the file-extension lock; it's now OK for someone else to extend     * the relation some more.  Note that we cannot release this lock before     * we have buffer lock on the new page, or we risk a race condition     * against vacuumlazy.c --- see comments therein.     */    if (needLock)        UnlockRelationForExtension(relation, ExclusiveLock);//释放扩展锁    /*     * We need to initialize the empty new page.  Double-check that it really     * is empty (this should never happen, but if it does we don't want to     * risk wiping out valid data).     */    page = BufferGetPage(buffer);//获取相应的Page    if (!PageIsNew(page))//不是New Page,那一定某个地方搞错了!        elog(ERROR, "page %u of relation \"%s\" should be empty but is not",             BufferGetBlockNumber(buffer),             RelationGetRelationName(relation));    //初始化New Page    PageInit(page, BufferGetPageSize(buffer), 0);    //New Page也满足不了要求的大小,报错    if (len > PageGetHeapFreeSpace(page))    {        /* We should not get here given the test at the top */        elog(PANIC, "tuple is too big: size %zu", len);    }    /*     * Remember the new page as our target for future insertions.     *     * XXX should we enter the new page into the free space map immediately,     * or just keep it for this backend's exclusive use in the short run     * (until VACUUM sees it)?  Seems to depend on whether you expect the     * current backend to make more insertions or not, which is probably a     * good bet most of the time.  So for now, don't add it to FSM yet.     */    //终于找到了可用于存储数据的Block    RelationSetTargetBlock(relation, BufferGetBlockNumber(buffer));    //返回    return buffer;}//-------------------------------------------------------------------------------/* * Read in a buffer, using bulk-insert strategy if bistate isn't NULL. */static BufferReadBufferBI(Relation relation, BlockNumber targetBlock,             BulkInsertState bistate){    Buffer      buffer;    /* If not bulk-insert, exactly like ReadBuffer */    if (!bistate)        return ReadBuffer(relation, targetBlock);//非BulkInsert模式,使用常规方法获取        //TODO 以下为BI模式    /* If we have the desired block already pinned, re-pin and return it */    if (bistate->current_buf != InvalidBuffer)    {        if (BufferGetBlockNumber(bistate->current_buf) == targetBlock)        {            IncrBufferRefCount(bistate->current_buf);            return bistate->current_buf;        }        /* ... else drop the old buffer */        ReleaseBuffer(bistate->current_buf);        bistate->current_buf = InvalidBuffer;    }    /* Perform a read using the buffer strategy */    buffer = ReadBufferExtended(relation, MAIN_FORKNUM, targetBlock,                                RBM_NORMAL, bistate->strategy);    /* Save the selected block as target for future inserts */    IncrBufferRefCount(buffer);    bistate->current_buf = buffer;    return buffer;} /*  * ReadBuffer -- a shorthand for ReadBufferExtended, for reading from main  *      fork with RBM_NORMAL mode and default strategy.  */ Buffer ReadBuffer(Relation reln, BlockNumber blockNum) {     return ReadBufferExtended(reln, MAIN_FORKNUM, blockNum, RBM_NORMAL, NULL); } typedef enum ForkNumber {     InvalidForkNumber = -1,     MAIN_FORKNUM = 0,     FSM_FORKNUM,     VISIBILITYMAP_FORKNUM,     INIT_FORKNUM      /*      * NOTE: if you add a new fork, change MAX_FORKNUM and possibly      * FORKNAMECHARS below, and update the forkNames array in      * src/common/relpath.c      */ } ForkNumber; //参考url : https://www.postgresql.org/docs/11/static/storage-file-layout.html /*  * ReadBufferExtended -- returns a buffer containing the requested  *      block of the requested relation.  If the blknum  *      requested is P_NEW, extend the relation file and  *      allocate a new block.  (Caller is responsible for  *      ensuring that only one backend tries to extend a  *      relation at the same time!)  *  * Returns: the buffer number for the buffer containing  *      the block read.  The returned buffer has been pinned.  *      Does not return on error --- elog's instead.  *  * Assume when this function is called, that reln has been opened already.  *  * In RBM_NORMAL mode, the page is read from disk, and the page header is  * validated.  An error is thrown if the page header is not valid.  (But  * note that an all-zero page is considered "valid"; see PageIsVerified().)  *  * RBM_ZERO_ON_ERROR is like the normal mode, but if the page header is not  * valid, the page is zeroed instead of throwing an error. This is intended  * for non-critical data, where the caller is prepared to repair errors.  *  * In RBM_ZERO_AND_LOCK mode, if the page isn't in buffer cache already, it's  * filled with zeros instead of reading it from disk.  Useful when the caller  * is going to fill the page from scratch, since this saves I/O and avoids  * unnecessary failure if the page-on-disk has corrupt page headers.  * The page is returned locked to ensure that the caller has a chance to  * initialize the page before it's made visible to others.  * Caution: do not use this mode to read a page that is beyond the relation's  * current physical EOF; that is likely to cause problems in md.c when  * the page is modified and written out. P_NEW is OK, though.  *  * RBM_ZERO_AND_CLEANUP_LOCK is the same as RBM_ZERO_AND_LOCK, but acquires  * a cleanup-strength lock on the page.  *  * RBM_NORMAL_NO_LOG mode is treated the same as RBM_NORMAL here.  *  * If strategy is not NULL, a nondefault buffer access strategy is used.  * See buffer/README for details.  */ Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum,                    ReadBufferMode mode, BufferAccessStrategy strategy) {     bool        hit;     Buffer      buf;      /* Open it at the smgr level if not already done */     RelationOpenSmgr(reln);//Smgr=Storage Manager,数据表存储管理封装      /*      * Reject attempts to read non-local temporary relations; we would be      * likely to get wrong data since we have no visibility into the owning      * session's local buffers.      */     if (RELATION_IS_OTHER_TEMP(reln))         ereport(ERROR,                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),                  errmsg("cannot access temporary tables of other sessions")));      /*      * Read the buffer, and update pgstat counters to reflect a cache hit or      * miss.      */     pgstat_count_buffer_read(reln);//统计信息     //TODO Buffer管理后续再行解读     buf = ReadBuffer_common(reln->rd_smgr, reln->rd_rel->relpersistence,                             forkNum, blockNum, mode, strategy, &hit);     if (hit)         pgstat_count_buffer_hit(reln);//统计信息     return buf; } 

3、CheckForSerializableConflictIn
检查序列化操作是否会出现冲突。比如并发执行delete & update操作的时候。

/*  * CheckForSerializableConflictIn  *      We are writing the given tuple.  If that indicates a rw-conflict  *      in from another serializable transaction, take appropriate action.  *  * Skip checking for any granularity for which a parameter is missing.  *  * A tuple update or delete is in conflict if we have a predicate lock  * against the relation or page in which the tuple exists, or against the  * tuple itself.  */ void CheckForSerializableConflictIn(Relation relation, HeapTuple tuple,                                Buffer buffer) {     PREDICATELOCKTARGETTAG targettag;      if (!SerializationNeededForWrite(relation))         return;      /* Check if someone else has already decided that we need to die */     if (SxactIsDoomed(MySerializableXact))         ereport(ERROR,                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),                  errmsg("could not serialize access due to read/write dependencies among transactions"),                  errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict in checking."),                  errhint("The transaction might succeed if retried.")));      /*      * We're doing a write which might cause rw-conflicts now or later.      * Memorize that fact.      */     MyXactDidWrite = true;      /*      * It is important that we check for locks from the finest granularity to      * the coarsest granularity, so that granularity promotion doesn't cause      * us to miss a lock.  The new (coarser) lock will be acquired before the      * old (finer) locks are released.      *      * It is not possible to take and hold a lock across the checks for all      * granularities because each target could be in a separate partition.      */     if (tuple != NULL)     {         SET_PREDICATELOCKTARGETTAG_TUPLE(targettag,                                          relation->rd_node.dbNode,                                          relation->rd_id,                                          ItemPointerGetBlockNumber(&(tuple->t_self)),                                          ItemPointerGetOffsetNumber(&(tuple->t_self)));         CheckTargetForConflictsIn(&targettag);     }      if (BufferIsValid(buffer))     {         SET_PREDICATELOCKTARGETTAG_PAGE(targettag,                                         relation->rd_node.dbNode,                                         relation->rd_id,                                         BufferGetBlockNumber(buffer));         CheckTargetForConflictsIn(&targettag);     }      SET_PREDICATELOCKTARGETTAG_RELATION(targettag,                                         relation->rd_node.dbNode,                                         relation->rd_id);     CheckTargetForConflictsIn(&targettag); }

4、START_CRIT_SECTION

extern PGDLLIMPORT volatile uint32 CritSectionCount; #define START_CRIT_SECTION()  (CritSectionCount++)

5、PageIsAllVisible

通过位操作判断Page是否All Visible#define PageIsAllVisible(page) \     (((PageHeader) (page))->pd_flags & PD_ALL_VISIBLE)

6、PageClearAllVisible

通过位操作清除All Visible标记 #define PageClearAllVisible(page) \  (((PageHeader) (page))->pd_flags &= ~PD_ALL_VISIBLE)

7、visibilitymap_clear

//TODO 缓冲区管理相关的设置,待进一步理解 /*  *  visibilitymap_clear - clear specified bits for one page in visibility map  *  * You must pass a buffer containing the correct map page to this function.  * Call visibilitymap_pin first to pin the right one. This function doesn't do  * any I/O.  Returns true if any bits have been cleared and false otherwise.  */ bool visibilitymap_clear(Relation rel, BlockNumber heapBlk, Buffer buf, uint8 flags) {     BlockNumber mapBlock = HEAPBLK_TO_MAPBLOCK(heapBlk);     int         mapByte = HEAPBLK_TO_MAPBYTE(heapBlk);     int         mapOffset = HEAPBLK_TO_OFFSET(heapBlk);     uint8       mask = flags << mapOffset;     char       *map;     bool        cleared = false;      Assert(flags & VISIBILITYMAP_VALID_BITS);  #ifdef TRACE_VISIBILITYMAP     elog(DEBUG1, "vm_clear %s %d", RelationGetRelationName(rel), heapBlk); #endif      if (!BufferIsValid(buf) || BufferGetBlockNumber(buf) != mapBlock)         elog(ERROR, "wrong buffer passed to visibilitymap_clear");      LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);     map = PageGetContents(BufferGetPage(buf));      if (map[mapByte] & mask)     {         map[mapByte] &= ~mask;          MarkBufferDirty(buf);         cleared = true;     }      LockBuffer(buf, BUFFER_LOCK_UNLOCK);      return cleared; }

8、MarkBufferDirty

//设置缓冲块为Dirty(待Flush到数据文件)//TODO 缓冲区相关管理 /*  * MarkBufferDirty  *  *      Marks buffer contents as dirty (actual write happens later).  *  * Buffer must be pinned and exclusive-locked.  (If caller does not hold  * exclusive lock, then somebody could be in process of writing the buffer,  * leading to risk of bad data written to disk.)  */ void MarkBufferDirty(Buffer buffer) {     BufferDesc *bufHdr;     uint32      buf_state;     uint32      old_buf_state;      if (!BufferIsValid(buffer))         elog(ERROR, "bad buffer ID: %d", buffer);      if (BufferIsLocal(buffer))     {         MarkLocalBufferDirty(buffer);         return;     }      bufHdr = GetBufferDescriptor(buffer - 1);      Assert(BufferIsPinned(buffer));     Assert(LWLockHeldByMeInMode(BufferDescriptorGetContentLock(bufHdr),                                 LW_EXCLUSIVE));      old_buf_state = pg_atomic_read_u32(&bufHdr->state);     for (;;)     {         if (old_buf_state & BM_LOCKED)             old_buf_state = WaitBufHdrUnlocked(bufHdr);          buf_state = old_buf_state;          Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);         buf_state |= BM_DIRTY | BM_JUST_DIRTIED;          if (pg_atomic_compare_exchange_u32(&bufHdr->state, &old_buf_state,                                            buf_state))             break;     }      /*      * If the buffer was not dirty already, do vacuum accounting.      */     if (!(old_buf_state & BM_DIRTY))     {         VacuumPageDirty++;         pgBufferUsage.shared_blks_dirtied++;         if (VacuumCostActive)             VacuumCostBalance += VacuumCostPageDirty;     } }

9、RelationNeedsWAL

非临时表,需持久化的数据表 /*  * RelationNeedsWAL  *      True if relation needs WAL.  */ #define RelationNeedsWAL(relation) \     ((relation)->rd_rel->relpersistence == RELPERSISTENCE_PERMANENT)

10、RelationIsAccessibleInLogicalDecoding

 /*  * RelationIsAccessibleInLogicalDecoding  *      True if we need to log enough information to have access via  *      decoding snapshot.  */ #define RelationIsAccessibleInLogicalDecoding(relation) \     (XLogLogicalInfoActive() && \ //处于逻辑复制活动状态      RelationNeedsWAL(relation) && \ //需要写WAL日志      (IsCatalogRelation(relation) || RelationIsUsedAsCatalogTable(relation)))//Catalog类型表

11、log_heap_new_cid

 /*  * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record  *  * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog  * tuples.  */ static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup) {     xl_heap_new_cid xlrec;      XLogRecPtr  recptr;     HeapTupleHeader hdr = tup->t_data;      Assert(ItemPointerIsValid(&tup->t_self));     Assert(tup->t_tableOid != InvalidOid);      xlrec.top_xid = GetTopTransactionId();     xlrec.target_node = relation->rd_node;     xlrec.target_tid = tup->t_self;      /*      * If the tuple got inserted & deleted in the same TX we definitely have a      * combocid, set cmin and cmax.      */     if (hdr->t_infomask & HEAP_COMBOCID)     {         Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID));         Assert(!HeapTupleHeaderXminInvalid(hdr));         xlrec.cmin = HeapTupleHeaderGetCmin(hdr);         xlrec.cmax = HeapTupleHeaderGetCmax(hdr);         xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr);     }     /* No combocid, so only cmin or cmax can be set by this TX */     else     {         /*          * Tuple inserted.          *          * We need to check for LOCK ONLY because multixacts might be          * transferred to the new tuple in case of FOR KEY SHARE updates in          * which case there will be an xmax, although the tuple just got          * inserted.          */         if (hdr->t_infomask & HEAP_XMAX_INVALID ||             HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask))         {             xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr);             xlrec.cmax = InvalidCommandId;         }         /* Tuple from a different tx updated or deleted. */         else         {             xlrec.cmin = InvalidCommandId;             xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr);          }         xlrec.combocid = InvalidCommandId;     }      /*      * Note that we don't need to register the buffer here, because this      * operation does not modify the page. The insert/update/delete that      * called us certainly did, but that's WAL-logged separately.      */     XLogBeginInsert();     XLogRegisterData((char *) &xlrec, SizeOfHeapNewCid);      /* will be looked at irrespective of origin */      recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID);      return recptr; }

12、RelationIsLogicallyLogged
判断数据表是否正在可用于逻辑复制,如需要,则需要记录足够信息用于后续的日志解析

 /*  * RelationIsLogicallyLogged  *      True if we need to log enough information to extract the data from the  *      WAL stream.  *  * We don't log information for unlogged tables (since they don't WAL log  * anyway) and for system tables (their content is hard to make sense of, and  * it would complicate decoding slightly for little gain). Note that we *do*  * log information for user defined catalog tables since they presumably are  * interesting to the user...  */ #define RelationIsLogicallyLogged(relation) \     (XLogLogicalInfoActive() && \      RelationNeedsWAL(relation) && \      !IsCatalogRelation(relation)) 

13、XLog*

XLogBeginInsertXLogRegisterDataXLogRegisterBufferXLogRegisterBufDataXLogSetRecordFlagsXLogInsert

14、PageSetLSN
设置PageHeader的LSN(先前已解析)

 #define PageSetLSN(page, lsn) \  PageXLogRecPtrSet(((PageHeader) (page))->pd_lsn, lsn)

15、END_CRIT_SECTION

 #define END_CRIT_SECTION() \ do { \     Assert(CritSectionCount > 0); \     CritSectionCount--; \ } while(0)

16、UnlockReleaseBuffer
释放Buffer锁

 /*  * UnlockReleaseBuffer -- release the content lock and pin on a buffer  *  * This is just a shorthand for a common combination.  */ void UnlockReleaseBuffer(Buffer buffer) {     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);     ReleaseBuffer(buffer); }

17、ReleaseBuffer
Unpin Buffer,意味着Buffer可Flush用于其他地方

 /*  * ReleaseBuffer -- release the pin on a buffer  */ void ReleaseBuffer(Buffer buffer) {     if (!BufferIsValid(buffer))         elog(ERROR, "bad buffer ID: %d", buffer);      if (BufferIsLocal(buffer))     {         ResourceOwnerForgetBuffer(CurrentResourceOwner, buffer);          Assert(LocalRefCount[-buffer - 1] > 0);         LocalRefCount[-buffer - 1]--;         return;     }      UnpinBuffer(GetBufferDescriptor(buffer - 1), true); }

18、CacheInvalidateHeapTuple
缓存那些已"无用"的Tuple,比如Update操作的原记录,Delete操作的原记录等。

 /*  * CacheInvalidateHeapTuple  *      Register the given tuple for invalidation at end of command  *      (ie, current command is creating or outdating this tuple).  *      Also, detect whether a relcache invalidation is implied.  *  * For an insert or delete, tuple is the target tuple and newtuple is NULL.  * For an update, we are called just once, with tuple being the old tuple  * version and newtuple the new version.  This allows avoidance of duplicate  * effort during an update.  */ void CacheInvalidateHeapTuple(Relation relation,                          HeapTuple tuple,                          HeapTuple newtuple) {     Oid         tupleRelId;     Oid         databaseId;     Oid         relationId;      /* Do nothing during bootstrap */     if (IsBootstrapProcessingMode())         return;      /*      * We only need to worry about invalidation for tuples that are in system      * catalogs; user-relation tuples are never in catcaches and can't affect      * the relcache either.      */     if (!IsCatalogRelation(relation))         return;      /*      * IsCatalogRelation() will return true for TOAST tables of system      * catalogs, but we don't care about those, either.      */     if (IsToastRelation(relation))         return;      /*      * If we're not prepared to queue invalidation messages for this      * subtransaction level, get ready now.      */     PrepareInvalidationState();      /*      * First let the catcache do its thing      */     tupleRelId = RelationGetRelid(relation);     if (RelationInvalidatesSnapshotsOnly(tupleRelId))     {         databaseId = IsSharedRelation(tupleRelId) ? InvalidOid : MyDatabaseId;         RegisterSnapshotInvalidation(databaseId, tupleRelId);     }     else         PrepareToInvalidateCacheTuple(relation, tuple, newtuple,                                       RegisterCatcacheInvalidation);      /*      * Now, is this tuple one of the primary definers of a relcache entry? See      * comments in file header for deeper explanation.      *      * Note we ignore newtuple here; we assume an update cannot move a tuple      * from being part of one relcache entry to being part of another.      */     if (tupleRelId == RelationRelationId)     {         Form_pg_class classtup = (Form_pg_class) GETSTRUCT(tuple);          relationId = HeapTupleGetOid(tuple);         if (classtup->relisshared)             databaseId = InvalidOid;         else             databaseId = MyDatabaseId;     }     else if (tupleRelId == AttributeRelationId)     {         Form_pg_attribute atttup = (Form_pg_attribute) GETSTRUCT(tuple);          relationId = atttup->attrelid;          /*          * KLUGE ALERT: we always send the relcache event with MyDatabaseId,          * even if the rel in question is shared (which we can't easily tell).          * This essentially means that only backends in this same database          * will react to the relcache flush request.  This is in fact          * appropriate, since only those backends could see our pg_attribute          * change anyway.  It looks a bit ugly though.  (In practice, shared          * relations can't have schema changes after bootstrap, so we should          * never come here for a shared rel anyway.)          */         databaseId = MyDatabaseId;     }     else if (tupleRelId == IndexRelationId)     {         Form_pg_index indextup = (Form_pg_index) GETSTRUCT(tuple);          /*          * When a pg_index row is updated, we should send out a relcache inval          * for the index relation.  As above, we don't know the shared status          * of the index, but in practice it doesn't matter since indexes of          * shared catalogs can't have such updates.          */         relationId = indextup->indexrelid;         databaseId = MyDatabaseId;     }     else         return;      /*      * Yes.  We need to register a relcache invalidation event.      */     RegisterRelcacheInvalidation(databaseId, relationId); }

19、heap_freetuple
释放内存

 /*  * heap_freetuple  */ void heap_freetuple(HeapTuple htup) {     pfree(htup); }

二、源码解读

heap_insert函数本身不复杂,最为复杂的子函数RelationGetBufferForTuple已在上一小节解析

/*输入:    relation-数据表结构体    tup-Heap Tuple数据(包括头部数据等),亦即数据行    cid-命令ID(顺序)    options-选项    bistate-BulkInsert状态输出:    Oid-数据表Oid*/Oidheap_insert(Relation relation, HeapTuple tup, CommandId cid,            int options, BulkInsertState bistate){    TransactionId xid = GetCurrentTransactionId();//事务id    HeapTuple   heaptup;//Heap Tuple数据,亦即数据行    Buffer      buffer;//数据缓存块    Buffer      vmbuffer = InvalidBuffer;//vm缓冲块    bool        all_visible_cleared = false;//标记    /*     * Fill in tuple header fields, assign an OID, and toast the tuple if     * necessary.     *     * Note: below this point, heaptup is the data we actually intend to store     * into the relation; tup is the caller's original untoasted data.     */    //插入前准备工作,比如设置t_infomask标记等    heaptup = heap_prepare_insert(relation, tup, xid, cid, options);    /*     * Find buffer to insert this tuple into.  If the page is all visible,     * this will also pin the requisite visibility map page.     */    //获取相应的buffer,详见上面的子函数解析    buffer = RelationGetBufferForTuple(relation, heaptup->t_len,                                       InvalidBuffer, options, bistate,                                       &vmbuffer, NULL);    /*     * We're about to do the actual insert -- but check for conflict first, to     * avoid possibly having to roll back work we've just done.     *     * This is safe without a recheck as long as there is no possibility of     * another process scanning the page between this check and the insert     * being visible to the scan (i.e., an exclusive buffer content lock is     * continuously held from this point until the tuple insert is visible).     *     * For a heap insert, we only need to check for table-level SSI locks. Our     * new tuple can't possibly conflict with existing tuple locks, and heap     * page locks are only consolidated versions of tuple locks; they do not     * lock "gaps" as index page locks do.  So we don't need to specify a     * buffer when making the call, which makes for a faster check.     */    //检查序列化是否冲突    CheckForSerializableConflictIn(relation, NULL, InvalidBuffer);    /* NO EREPORT(ERROR) from here till changes are logged */    //开始,变量+1    START_CRIT_SECTION();    //插入数据(详见上一节对该函数的解析)    RelationPutHeapTuple(relation, buffer, heaptup,                         (options & HEAP_INSERT_SPECULATIVE) != 0);    //如Page is All Visible    if (PageIsAllVisible(BufferGetPage(buffer)))    {        //复位        all_visible_cleared = true;        PageClearAllVisible(BufferGetPage(buffer));        visibilitymap_clear(relation,                            ItemPointerGetBlockNumber(&(heaptup->t_self)),                            vmbuffer, VISIBILITYMAP_VALID_BITS);    }    /*     * XXX Should we set PageSetPrunable on this page ?     *     * The inserting transaction may eventually abort thus making this tuple     * DEAD and hence available for pruning. Though we don't want to optimize     * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the     * aborted tuple will never be pruned until next vacuum is triggered.     *     * If you do add PageSetPrunable here, add it in heap_xlog_insert too.     */    //设置缓冲块为脏块    MarkBufferDirty(buffer);    /* XLOG stuff */    //记录日志    if (!(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation))    {        xl_heap_insert xlrec;        xl_heap_header xlhdr;        XLogRecPtr  recptr;        Page        page = BufferGetPage(buffer);        uint8       info = XLOG_HEAP_INSERT;        int         bufflags = 0;        /*         * If this is a catalog, we need to transmit combocids to properly         * decode, so log that as well.         */        if (RelationIsAccessibleInLogicalDecoding(relation))            log_heap_new_cid(relation, heaptup);        /*         * If this is the single and first tuple on page, we can reinit the         * page instead of restoring the whole thing.  Set flag, and hide         * buffer references from XLogInsert.         */        if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&            PageGetMaxOffsetNumber(page) == FirstOffsetNumber)        {            info |= XLOG_HEAP_INIT_PAGE;            bufflags |= REGBUF_WILL_INIT;        }        xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);        xlrec.flags = 0;        if (all_visible_cleared)            xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED;        if (options & HEAP_INSERT_SPECULATIVE)            xlrec.flags |= XLH_INSERT_IS_SPECULATIVE;        Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer));        /*         * For logical decoding, we need the tuple even if we're doing a full         * page write, so make sure it's included even if we take a full-page         * image. (XXX We could alternatively store a pointer into the FPW).         */        if (RelationIsLogicallyLogged(relation))        {            xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;            bufflags |= REGBUF_KEEP_DATA;        }        XLogBeginInsert();        XLogRegisterData((char *) &xlrec, SizeOfHeapInsert);        xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;        xlhdr.t_infomask = heaptup->t_data->t_infomask;        xlhdr.t_hoff = heaptup->t_data->t_hoff;        /*         * note we mark xlhdr as belonging to buffer; if XLogInsert decides to         * write the whole page to the xlog, we don't need to store         * xl_heap_header in the xlog.         */        XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);        XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader);        /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */        XLogRegisterBufData(0,                            (char *) heaptup->t_data + SizeofHeapTupleHeader,                            heaptup->t_len - SizeofHeapTupleHeader);        /* filtering by origin on a row level is much more efficient */        XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);        recptr = XLogInsert(RM_HEAP_ID, info);        PageSetLSN(page, recptr);    }    //完成!    END_CRIT_SECTION();    //解锁Buffer,包括vm buffer    UnlockReleaseBuffer(buffer);    if (vmbuffer != InvalidBuffer)        ReleaseBuffer(vmbuffer);    /*     * If tuple is cachable, mark it for invalidation from the caches in case     * we abort.  Note it is OK to do this after releasing the buffer, because     * the heaptup data structure is all in local memory, not in the shared     * buffer.     */    //缓存操作后变"无效"的Tuple    CacheInvalidateHeapTuple(relation, heaptup, NULL);    /* Note: speculative insertions are counted too, even if aborted later */    //更新统计信息    pgstat_count_heap_insert(relation, 1);    /*     * If heaptup is a private copy, release it.  Don't forget to copy t_self     * back to the caller's image, too.     */    if (heaptup != tup)    {        tup->t_self = heaptup->t_self;        heap_freetuple(heaptup);    }    return HeapTupleGetOid(tup);}

三、跟踪分析

插入一条记录,使用gdb进行跟踪分析:

-- 这次启动事务testdb=# begin;BEGINtestdb=# select pg_backend_pid(); pg_backend_pid ----------------           1556(1 row)testdb=# insert into t_insert values(11,'11','11','11');(挂起)

启动gdb:

[root@localhost ~]# gdb -p 1556GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-100.el7Copyright (C) 2013 Free Software Foundation, Inc....(gdb) b heap_insertBreakpoint 1 at 0x4c343c: file heapam.c, line 2444.#输入参数:(gdb) p *relation$1 = {rd_node = {spcNode = 1663, dbNode = 16477, relNode = 26731}, rd_smgr = 0x0, rd_refcnt = 1, rd_backend = -1, rd_islocaltemp = false, rd_isnailed = false, rd_isvalid = true,   rd_indexvalid = 0 '\000', rd_statvalid = false, rd_createSubid = 0, rd_newRelfilenodeSubid = 0, rd_rel = 0x7f5fdd1771f0, rd_att = 0x7f5fdd177300, rd_id = 26731, rd_lockInfo = {lockRelId = {      relId = 26731, dbId = 16477}}, rd_rules = 0x0, rd_rulescxt = 0x0, trigdesc = 0x0, rd_rsdesc = 0x0, rd_fkeylist = 0x0, rd_fkeyvalid = false, rd_partkeycxt = 0x0, rd_partkey = 0x0, rd_pdcxt = 0x0,   rd_partdesc = 0x0, rd_partcheck = 0x0, rd_indexlist = 0x0, rd_oidindex = 0, rd_pkindex = 0, rd_replidindex = 0, rd_statlist = 0x0, rd_indexattr = 0x0, rd_projindexattr = 0x0, rd_keyattr = 0x0,   rd_pkattr = 0x0, rd_idattr = 0x0, rd_projidx = 0x0, rd_pubactions = 0x0, rd_options = 0x0, rd_index = 0x0, rd_indextuple = 0x0, rd_amhandler = 0, rd_indexcxt = 0x0, rd_amroutine = 0x0,   rd_opfamily = 0x0, rd_opcintype = 0x0, rd_support = 0x0, rd_supportinfo = 0x0, rd_indoption = 0x0, rd_indexprs = 0x0, rd_indpred = 0x0, rd_exclops = 0x0, rd_exclprocs = 0x0, rd_exclstrats = 0x0,   rd_amcache = 0x0, rd_indcollation = 0x0, rd_fdwroutine = 0x0, rd_toastoid = 0, pgstat_info = 0x146f9b8}(gdb) p *tup$2 = {t_len = 61, t_self = {ip_blkid = {bi_hi = 65535, bi_lo = 65535}, ip_posid = 0}, t_tableOid = 26731, t_data = 0x14b19f8}(gdb) p *(tup->t_data)$3 = {t_choice = {t_heap = {t_xmin = 244, t_xmax = 4294967295, t_field3 = {t_cid = 2249, t_xvac = 2249}}, t_datum = {datum_len_ = 244, datum_typmod = -1, datum_typeid = 2249}}, t_ctid = {ip_blkid = {      bi_hi = 65535, bi_lo = 65535}, ip_posid = 0}, t_infomask2 = 4, t_infomask = 2, t_hoff = 24 '\030', t_bits = 0x14b1a0f ""}(gdb) p *(tup->t_data->t_bits)$4 = 0 '\000'(gdb) p cid$5 = 0(gdb) p options$6 = 0(gdb) p bistate$7 = (BulkInsertState) 0x0(gdb) next2447        Buffer      vmbuffer = InvalidBuffer;(gdb) p xid$8 = 1612859(gdb) next2448        bool        all_visible_cleared = false;(gdb) 2457        heaptup = heap_prepare_insert(relation, tup, xid, cid, options);(gdb) 2463        buffer = RelationGetBufferForTuple(relation, heaptup->t_len,(gdb) p *heaptup$9 = {t_len = 61, t_self = {ip_blkid = {bi_hi = 65535, bi_lo = 65535}, ip_posid = 0}, t_tableOid = 26731, t_data = 0x14b19f8}(gdb) next2482        CheckForSerializableConflictIn(relation, NULL, InvalidBuffer);(gdb) p buffer$10 = 185(gdb) next2485        START_CRIT_SECTION();(gdb) 2488                             (options & HEAP_INSERT_SPECULATIVE) != 0);(gdb) 2487        RelationPutHeapTuple(relation, buffer, heaptup,(gdb) 2490        if (PageIsAllVisible(BufferGetPage(buffer)))(gdb) 2510        MarkBufferDirty(buffer);(gdb) p buffer$11 = 185(gdb) next2513        if (!(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation))(gdb) 2518            Page        page = BufferGetPage(buffer);(gdb) 2519            uint8       info = XLOG_HEAP_INSERT;(gdb) p *page$12 = 1 '\001'(gdb) p *(PageHeader)page$13 = {pd_lsn = {xlogid = 1, xrecoff = 3677481952}, pd_checksum = 0, pd_flags = 0, pd_lower = 64, pd_upper = 7552, pd_special = 8192, pd_pagesize_version = 8196, pd_prune_xid = 0,   pd_linp = 0x7f5fc5409318}(gdb) next2520            int         bufflags = 0;(gdb) 2526            if (RelationIsAccessibleInLogicalDecoding(relation))(gdb) 2534            if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&(gdb) 2541            xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);(gdb) 2542            xlrec.flags = 0;(gdb) 2543            if (all_visible_cleared)(gdb) 2545            if (options & HEAP_INSERT_SPECULATIVE)(gdb) 2554            if (RelationIsLogicallyLogged(relation))(gdb) 2560            XLogBeginInsert();(gdb) 2561            XLogRegisterData((char *) &xlrec, SizeOfHeapInsert);(gdb) p xlrec$14 = {offnum = 10, flags = 0 '\000'}(gdb) next2563            xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;(gdb) 2564            xlhdr.t_infomask = heaptup->t_data->t_infomask;(gdb) 2565            xlhdr.t_hoff = heaptup->t_data->t_hoff;(gdb) 2572            XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);(gdb) 2573            XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader);(gdb) 2577                                heaptup->t_len - SizeofHeapTupleHeader);(gdb) 2575            XLogRegisterBufData(0,(gdb) 2576                                (char *) heaptup->t_data + SizeofHeapTupleHeader,(gdb) 2575            XLogRegisterBufData(0,(gdb) 2580            XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);(gdb) 2582            recptr = XLogInsert(RM_HEAP_ID, info);(gdb) 2584            PageSetLSN(page, recptr);(gdb) 2587        END_CRIT_SECTION();(gdb) 2589        UnlockReleaseBuffer(buffer);(gdb) 2590        if (vmbuffer != InvalidBuffer)(gdb) 2599        CacheInvalidateHeapTuple(relation, heaptup, NULL);(gdb) 2602        pgstat_count_heap_insert(relation, 1);(gdb) 2608        if (heaptup != tup)(gdb) 2614        return HeapTupleGetOid(tup);(gdb) p *tup$15 = {t_len = 61, t_self = {ip_blkid = {bi_hi = 0, bi_lo = 0}, ip_posid = 10}, t_tableOid = 26731, t_data = 0x14b19f8}(gdb) p *(tup->t_data)$16 = {t_choice = {t_heap = {t_xmin = 1612859, t_xmax = 0, t_field3 = {t_cid = 0, t_xvac = 0}}, t_datum = {datum_len_ = 1612859, datum_typmod = 0, datum_typeid = 0}}, t_ctid = {ip_blkid = {      bi_hi = 65535, bi_lo = 65535}, ip_posid = 0}, t_infomask2 = 4, t_infomask = 2050, t_hoff = 24 '\030', t_bits = 0x14b1a0f ""}(gdb)(gdb) n2615    }(gdb) n#done!ExecInsert (mtstate=0x14b0c10, slot=0x14b1250, planSlot=0x14b1250, estate=0x14b08c0, canSetTag=true) at nodeModifyTable.c:534534             if (resultRelInfo->ri_NumIndices > 0) 

四、小结

1、简单的反面是复杂:插入一行数据,涉及缓冲区管理(在PG中还需要考虑死锁)、日志处理等一系列的细节,原理/理论是简单的,但要在工程上实现得漂亮,不容易!程序猿们,加油吧!
2、NoSQL是"简单"的,RDBMS是"复杂"的:NoSQL不需要考虑事务,简化了日志处理,实现逻辑相对简单;RDBMS需要考虑A/B/C/D...,权衡了各种利弊,值得深入学习。

0