PostgreSQL 源码解读(88)- 查询语句#73(SeqNext函数#1)
本节介绍了SeqNext函数的主要实现逻辑以及该函数中初始化相关数据结构的实现逻辑。SeqNext函数作为参数传递到函数ExecScan中,执行实际的扫描操作。
一、数据结构
TupleTableSlot
Tuple Table Slot,用于存储元组相关信息
/* base tuple table slot type */typedef struct TupleTableSlot{ NodeTag type;//Node标记#define FIELDNO_TUPLETABLESLOT_FLAGS 1 uint16 tts_flags; /* 布尔状态;Boolean states */#define FIELDNO_TUPLETABLESLOT_NVALID 2 AttrNumber tts_nvalid; /* 在tts_values中有多少有效的values;# of valid values in tts_values */ const TupleTableSlotOps *const tts_ops; /* 实现一个slot的成本;implementation of slot */#define FIELDNO_TUPLETABLESLOT_TUPLEDESCRIPTOR 4 TupleDesc tts_tupleDescriptor; /* slot的元组描述符;slot's tuple descriptor */#define FIELDNO_TUPLETABLESLOT_VALUES 5 Datum *tts_values; /* 当前属性值;current per-attribute values */#define FIELDNO_TUPLETABLESLOT_ISNULL 6 bool *tts_isnull; /* 当前属性isnull标记;current per-attribute isnull flags */ MemoryContext tts_mcxt; /*内存上下文; slot itself is in this context */} TupleTableSlot;typedef struct tupleDesc{ int natts; /* tuple中的属性数量;number of attributes in the tuple */ Oid tdtypeid; /* tuple类型的组合类型ID;composite type ID for tuple type */ int32 tdtypmod; /* tuple类型的typmode;typmod for tuple type */ int tdrefcount; /* 依赖计数,如为-1,则没有依赖;reference count, or -1 if not counting */ TupleConstr *constr; /* 约束,如无则为NULL;constraints, or NULL if none */ /* attrs[N] is the description of Attribute Number N+1 */ //attrs[N]是第N+1个属性的描述符 FormData_pg_attribute attrs[FLEXIBLE_ARRAY_MEMBER];} *TupleDesc;
HeapTuple
HeapTupleData是一个指向元组的内存数据结构
HeapTuple是指向HeapTupleData指针
/* * HeapTupleData is an in-memory data structure that points to a tuple. * HeapTupleData是一个指向元组的内存数据结构。 * * There are several ways in which this data structure is used: * 使用这种数据结构有几种方式: * * * Pointer to a tuple in a disk buffer: t_data points directly into the * buffer (which the code had better be holding a pin on, but this is not * reflected in HeapTupleData itself). * 指向磁盘缓冲区中的一个tuple的指针: * t_data点直接指向缓冲区(代码最好将pin放在缓冲区中,但这在HeapTupleData本身中没有反映出来)。 * * * Pointer to nothing: t_data is NULL. This is used as a failure indication * in some functions. * 没有指针: * t_data是空的。用于在一些函数中作为故障指示。 * * * Part of a palloc'd tuple: the HeapTupleData itself and the tuple * form a single palloc'd chunk. t_data points to the memory location * immediately following the HeapTupleData struct (at offset HEAPTUPLESIZE). * This is the output format of heap_form_tuple and related routines. * palloc'd tuple的一部分:HeapTupleData本身和tuple形成一个单一的palloc'd chunk。 * t_data指向HeapTupleData结构体后面的内存位置(偏移HEAPTUPLESIZE)。 * 这是heap_form_tuple和相关例程的输出格式。 * * * Separately allocated tuple: t_data points to a palloc'd chunk that * is not adjacent to the HeapTupleData. (This case is deprecated since * it's difficult to tell apart from case #1. It should be used only in * limited contexts where the code knows that case #1 will never apply.) * 单独分配的tuple: * t_data指向一个与HeapTupleData不相邻的palloc数据块。 * (这个情况已废弃不用,因为很难与第一种情况中进行区分。 * 它应该只在代码知道第一种情况永远不会适用的有限上下文中使用。 * * * Separately allocated minimal tuple: t_data points MINIMAL_TUPLE_OFFSET * bytes before the start of a MinimalTuple. As with the previous case, * this can't be told apart from case #1 by inspection; code setting up * or destroying this representation has to know what it's doing. * 独立分配的最小元组: * t_data指向MinimalTuple开始前偏移MINIMAL_TUPLE_OFFSET个字节的位置。 * 与前一种情况一样,不能通过检查与第一种情况相区别; * 设置或销毁这种表示的代码必须知道它在做什么。 * * t_len should always be valid, except in the pointer-to-nothing case. * t_self and t_tableOid should be valid if the HeapTupleData points to * a disk buffer, or if it represents a copy of a tuple on disk. They * should be explicitly set invalid in manufactured tuples. * t_len应该总是有效的,除非在指针为NULL。 * 如果HeapTupleData指向磁盘缓冲区,或者它表示磁盘上元组的副本,那么t_self和t_tableOid应该是有效的。 * 它们应该显式地在制造的元组中设置为无效。 */typedef struct HeapTupleData{ uint32 t_len; /* *t_data指针的长度;length of *t_data */ ItemPointerData t_self; /* SelfItemPointer */ Oid t_tableOid; /* 该元组所属的table;table the tuple came from */#define FIELDNO_HEAPTUPLEDATA_DATA 3 HeapTupleHeader t_data; /* 指向元组的header&数据;-> tuple header and data */} HeapTupleData;typedef HeapTupleData *HeapTuple;#define HEAPTUPLESIZE MAXALIGN(sizeof(HeapTupleData))
HeapScanDesc
HeapScanDesc是指向HeapScanDescData结构体的指针
typedef struct HeapScanDescData{ /* scan parameters */ Relation rs_rd; /* 堆表描述符;heap relation descriptor */ Snapshot rs_snapshot; /* 快照;snapshot to see */ int rs_nkeys; /* 扫描键数;number of scan keys */ ScanKey rs_key; /* 扫描键数组;array of scan key descriptors */ bool rs_bitmapscan; /* bitmap scan=>T;true if this is really a bitmap scan */ bool rs_samplescan; /* sample scan=>T;true if this is really a sample scan */ bool rs_pageatatime; /* 是否验证可见性(MVCC机制);verify visibility page-at-a-time? */ bool rs_allow_strat; /* 是否允许访问策略的使用;allow or disallow use of access strategy */ bool rs_allow_sync; /* 是否允许syncscan的使用;allow or disallow use of syncscan */ bool rs_temp_snap; /* 是否在扫描结束后取消快照"登记";unregister snapshot at scan end? */ /* state set up at initscan time */ //在initscan时配置的状态 BlockNumber rs_nblocks; /* rel中的blocks总数;total number of blocks in rel */ BlockNumber rs_startblock; /* 开始的block编号;block # to start at */ BlockNumber rs_numblocks; /* 最大的block编号;max number of blocks to scan */ /* rs_numblocks is usually InvalidBlockNumber, meaning "scan whole rel" */ //rs_numblocks通常值为InvalidBlockNumber,意味着扫描整个rel BufferAccessStrategy rs_strategy; /* 读取时的访问场景;access strategy for reads */ bool rs_syncscan; /* 在syncscan逻辑处理时是否报告位置;report location to syncscan logic? */ /* scan current state */ //扫描时的当前状态 bool rs_inited; /* 如为F,则扫描尚未初始化;false = scan not init'd yet */ HeapTupleData rs_ctup; /* 当前扫描的tuple;current tuple in scan, if any */ BlockNumber rs_cblock; /* 当前扫描的block;current block # in scan, if any */ Buffer rs_cbuf; /* 当前扫描的buffer;current buffer in scan, if any */ /* NB: if rs_cbuf is not InvalidBuffer, we hold a pin on that buffer */ //注意:如果rs_cbuf<>InvalidBuffer,在buffer设置pin ParallelHeapScanDesc rs_parallel; /* 并行扫描信息;parallel scan information */ /* these fields only used in page-at-a-time mode and for bitmap scans */ //下面的变量只用于page-at-a-time模式以及位图扫描 int rs_cindex; /* 在vistuples中的当前元组索引;current tuple's index in vistuples */ int rs_ntuples; /* page中的可见元组计数;number of visible tuples on page */ OffsetNumber rs_vistuples[MaxHeapTuplesPerPage]; /* 元组的偏移;their offsets */} HeapScanDescData;/* struct definitions appear in relscan.h */typedef struct HeapScanDescData *HeapScanDesc;
ScanState
ScanState扩展了对表示底层关系扫描的节点类型的PlanState。
/* ---------------- * ScanState information * * ScanState extends PlanState for node types that represent * scans of an underlying relation. It can also be used for nodes * that scan the output of an underlying plan node --- in that case, * only ScanTupleSlot is actually useful, and it refers to the tuple * retrieved from the subplan. * ScanState扩展了对表示底层关系扫描的节点类型的PlanState。 * 它还可以用于扫描底层计划节点的输出的节点--在这种情况下,实际上只有ScanTupleSlot有用,它引用从子计划检索到的元组。 * * currentRelation relation being scanned (NULL if none) * 正在扫描的relation,如无则为NULL * currentScanDesc current scan descriptor for scan (NULL if none) * 当前的扫描描述符,如无则为NULL * ScanTupleSlot pointer to slot in tuple table holding scan tuple * 指向tuple table中的slot * ---------------- */typedef struct ScanState{ PlanState ps; /* its first field is NodeTag */ Relation ss_currentRelation; HeapScanDesc ss_currentScanDesc; TupleTableSlot *ss_ScanTupleSlot;} ScanState;/* ---------------- * SeqScanState information * ---------------- */typedef struct SeqScanState{ ScanState ss; /* its first field is NodeTag */ Size pscan_len; /* size of parallel heap scan descriptor */} SeqScanState;
二、源码解读
SeqNext函数是ExecSeqScan的元组的实际访问方法(ExecScanAccessMtd).这里简单介绍了初始化过程,实际的元组获取过程下节再行介绍.
/* ---------------------------------------------------------------- * SeqNext * * This is a workhorse for ExecSeqScan * 这是ExecSeqScan的实际访问方法(ExecScanAccessMtd) * ---------------------------------------------------------------- */static TupleTableSlot *SeqNext(SeqScanState *node){ HeapTuple tuple; HeapScanDesc scandesc; EState *estate; ScanDirection direction; TupleTableSlot *slot; /* * get information from the estate and scan state * 从EState和ScanSate中获取相关信息 */ scandesc = node->ss.ss_currentScanDesc; estate = node->ss.ps.state; direction = estate->es_direction; slot = node->ss.ss_ScanTupleSlot; if (scandesc == NULL)//如scandesc为NULL,则初始化 { /* * We reach here if the scan is not parallel, or if we're serially * executing a scan that was planned to be parallel. * 如果扫描不是并行的,或者正在序列化执行计划为并行的扫描,实现逻辑就会到这里。 */ scandesc = heap_beginscan(node->ss.ss_currentRelation, estate->es_snapshot, 0, NULL);//扫描前准备,返回HeapScanDesc node->ss.ss_currentScanDesc = scandesc;//赋值 } /* * get the next tuple from the table * 从数据表中获取下一个tuple */ tuple = heap_getnext(scandesc, direction); /* * save the tuple and the buffer returned to us by the access methods in * our scan tuple slot and return the slot. Note: we pass 'false' because * tuples returned by heap_getnext() are pointers onto disk pages and were * not created with palloc() and so should not be pfree()'d. Note also * that ExecStoreHeapTuple will increment the refcount of the buffer; the * refcount will not be dropped until the tuple table slot is cleared. * 保存的元组和缓冲区,这些信息通过调用访问方法时返回,同时该方法返回slot。 * 注意:我们传递'false',因为heap_getnext()返回的元组是指向磁盘页面的指针, * 不是用palloc()创建的,所以不应该使用pfree()函数释放。 * 还要注意,ExecStoreHeapTuple将增加缓冲区的refcount;在清除tuple table slot之前不会删除refcount。 */ if (tuple)//获取了tuple ExecStoreBufferHeapTuple(tuple, /* 需要存储的tuple;tuple to store */ slot, /* 即将用于存储tuple的slot;slot to store in */ scandesc->rs_cbuf); /* 与该tuple相关联的缓冲区; buffer associated * with this tuple */ else ExecClearTuple(slot);//tuple为NULL,则释放slot return slot;//返回slot}/* * SeqRecheck -- access method routine to recheck a tuple in EvalPlanQual * 访问方法在EvalPlanQual中对元组重新检查 */static boolSeqRecheck(SeqScanState *node, TupleTableSlot *slot){ /* * Note that unlike IndexScan, SeqScan never use keys in heap_beginscan * (and this is very bad) - so, here we do not check are keys ok or not. * 注意,与IndexScan不同,SeqScan从不使用heap_beginscan中的键(这很糟糕)--因此,这里我们不检查键是否正确。 */ //直接返回T return true;}/* ---------------- * heap_beginscan - begin relation scan * heap_beginscan - 开始堆表扫描 * * heap_beginscan is the "standard" case. * heap_beginscan是标准情况 * * heap_beginscan_catalog differs in setting up its own temporary snapshot. * heap_beginscan_catalog与heap_beginscan不同的是,该方法配置自己的临时快照 * * heap_beginscan_strat offers an extended API that lets the caller control * whether a nondefault buffer access strategy can be used, and whether * syncscan can be chosen (possibly resulting in the scan not starting from * block zero). Both of these default to true with plain heap_beginscan. * heap_beginscan_strat提供了一个扩展API,可以让调用者控制是否可以使用非默认的缓冲区访问策略, * 以及是否可以选择syncscan(可能导致扫描从非0块开始)。 * 对于普通的heap_beginscan,这两个默认值都为T。 * * heap_beginscan_bm is an alternative entry point for setting up a * HeapScanDesc for a bitmap heap scan. Although that scan technology is * really quite unlike a standard seqscan, there is just enough commonality * to make it worth using the same data structure. * heap_beginscan_bm是为位图堆扫描设置HeapScanDesc的备选入口点。 * 尽管这种扫描技术与标准的seqscan非常不同,但它有足够的共性,因此值得使用相同的数据结构。 * * heap_beginscan_sampling is an alternative entry point for setting up a * HeapScanDesc for a TABLESAMPLE scan. As with bitmap scans, it's worth * using the same data structure although the behavior is rather different. * In addition to the options offered by heap_beginscan_strat, this call * also allows control of whether page-mode visibility checking is used. * heap_beginscan_sampling是为TABLESAMPLE扫描设置HeapScanDesc的备选入口点。 * 与位图扫描一样,使用相同的数据结构是值得的,尽管其行为相当不同。 * 除了heap_beginscan_strat提供的选项之外,这个调用还允许控制是否使用页面模式可见性检查。 * ---------------- */HeapScanDescheap_beginscan(Relation relation, Snapshot snapshot, int nkeys, ScanKey key){ return heap_beginscan_internal(relation, snapshot, nkeys, key, NULL, true, true, true, false, false, false);//标准情况,调用heap_beginscan_internal}static HeapScanDescheap_beginscan_internal(Relation relation, Snapshot snapshot,//Relation & snapshot int nkeys, ScanKey key,//键个数&扫描键 ParallelHeapScanDesc parallel_scan,//并行扫描描述符 bool allow_strat,//允许开始? bool allow_sync,//允许sync扫描? bool allow_pagemode,//允许页模式? bool is_bitmapscan,//是否位图扫描 bool is_samplescan,//是否采样扫描 bool temp_snap)//是否使用临时快照{ HeapScanDesc scan;//堆表扫描描述符 /* * increment relation ref count while scanning relation * 在扫描时增加relation依赖计数 * * This is just to make really sure the relcache entry won't go away while * the scan has a pointer to it. Caller should be holding the rel open * anyway, so this is redundant in all normal scenarios... * 这只是为了确保relcache条目不会在扫描存在指向它的指针时消失。 * 无论如何,调用者都应该保持rel是打开的,所以这在所有正常情况下都是多余的…… */ RelationIncrementReferenceCount(relation); /* * allocate and initialize scan descriptor * 分配并初始化扫描描述符 */ scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData)); scan->rs_rd = relation; scan->rs_snapshot = snapshot; scan->rs_nkeys = nkeys; scan->rs_bitmapscan = is_bitmapscan; scan->rs_samplescan = is_samplescan; scan->rs_strategy = NULL; /* set in initscan */ scan->rs_allow_strat = allow_strat; scan->rs_allow_sync = allow_sync; scan->rs_temp_snap = temp_snap; scan->rs_parallel = parallel_scan; /* * we can use page-at-a-time mode if it's an MVCC-safe snapshot * 如果快照是MVCC-safte,那么要使用page-at-a-time模式 */ scan->rs_pageatatime = allow_pagemode && IsMVCCSnapshot(snapshot); /* * For a seqscan in a serializable transaction, acquire a predicate lock * on the entire relation. This is required not only to lock all the * matching tuples, but also to conflict with new insertions into the * table. In an indexscan, we take page locks on the index pages covering * the range specified in the scan qual, but in a heap scan there is * nothing more fine-grained to lock. A bitmap scan is a different story, * there we have already scanned the index and locked the index pages * covering the predicate. But in that case we still have to lock any * matching heap tuples. * 对于serializable事务中的seqscan,获取整个关系上的谓词锁。 * 这不仅需要锁定所有匹配的元组,还需要与表中发生的新插入存在冲突。 * 在indexscan中,在覆盖了scan qual中指定的范围的索引页上获取分页锁,但是在堆扫描中没有更细粒度的锁。 * 位图扫描则不同,已经扫描了索引并锁定了覆盖谓词的索引页。但在这种情况下,仍然需要锁定所有匹配的堆元组。 */ if (!is_bitmapscan) PredicateLockRelation(relation, snapshot); /* we only need to set this up once */ //设置relid scan->rs_ctup.t_tableOid = RelationGetRelid(relation); /* * we do this here instead of in initscan() because heap_rescan also calls * initscan() and we don't want to allocate memory again * 在这里完成而不是在initscan()中处理是因为heap_rescan也调用initscan(),因此不希望再分配内存 */ if (nkeys > 0) scan->rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys); else scan->rs_key = NULL; //初始化scan initscan(scan, key, false); return scan;}/* Get the LockTupleMode for a given MultiXactStatus */#define TUPLOCK_from_mxstatus(status) \ (MultiXactStatusLock[(status)])/* ---------------------------------------------------------------- * heap support routines * ---------------------------------------------------------------- *//* ---------------- * initscan - scan code common to heap_beginscan and heap_rescan * initscan - heap_beginscan & heap_rescan的扫描代码 * ---------------- */static voidinitscan(HeapScanDesc scan, ScanKey key, bool keep_startblock){ bool allow_strat; bool allow_sync; /* * Determine the number of blocks we have to scan. * 确定必须扫描的block数 * * It is sufficient to do this once at scan start, since any tuples added * while the scan is in progress will be invisible to my snapshot anyway. * (That is not true when using a non-MVCC snapshot. However, we couldn't * guarantee to return tuples added after scan start anyway, since they * might go into pages we already scanned. To guarantee consistent * results for a non-MVCC snapshot, the caller must hold some higher-level * lock that ensures the interesting tuple(s) won't change.) * 只要在扫描开始时做一次就足够了,因为在扫描进行过程中添加的任何元组对快照都是不可见的。 * (在使用非MVCC快照时不是这样,不能保证返回扫描开始后添加的元组,因为它们可能会存储在已扫描的页面。 * 为了保证非MVCC快照的一致结果,调用者必须持有一些高级锁,以确保有受影响的元组不会改变。) */ if (scan->rs_parallel != NULL) scan->rs_nblocks = scan->rs_parallel->phs_nblocks; else scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_rd); /* * If the table is large relative to NBuffers, use a bulk-read access * strategy and enable synchronized scanning (see syncscan.c). Although * the thresholds for these features could be different, we make them the * same so that there are only two behaviors to tune rather than four. * (However, some callers need to be able to disable one or both of these * behaviors, independently of the size of the table; also there is a GUC * variable that can disable synchronized scanning.) * 如果表相对于nbuffer较大,则使用批量读取访问策略并启用同步扫描(参见syncscan.c)。 * 尽管这些特性的阈值可能不同,但我们使它们相同,以便只有两种行为可以进行调优,而不是四种。 * (然而,一些调用者需要能够禁用其中一种或两种行为,这与表的大小无关;还有一个GUC变量可以禁用同步扫描。) * * Note that heap_parallelscan_initialize has a very similar test; if you * change this, consider changing that one, too. * 注意,heap_parallelscan_initialize中有一个非常类似的测试; * 如果你改变了这个,也应该考虑改变那个。 */ if (!RelationUsesLocalBuffers(scan->rs_rd) && scan->rs_nblocks > NBuffers / 4) { allow_strat = scan->rs_allow_strat; allow_sync = scan->rs_allow_sync; } else allow_strat = allow_sync = false;//设置为F if (allow_strat)//允许使用访问策略 { /* During a rescan, keep the previous strategy object. */ //在重新扫描期间,存储先前的策略(strategy)对象 if (scan->rs_strategy == NULL) scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD); } else { if (scan->rs_strategy != NULL) FreeAccessStrategy(scan->rs_strategy); scan->rs_strategy = NULL;//不允许,则设置为NULL } if (scan->rs_parallel != NULL)//使用并行 { /* For parallel scan, believe whatever ParallelHeapScanDesc says. */ //对于并行扫描,使用ParallelHeapScanDesc中的变量 scan->rs_syncscan = scan->rs_parallel->phs_syncscan; } else if (keep_startblock) { /* * When rescanning, we want to keep the previous startblock setting, * so that rewinding a cursor doesn't generate surprising results. * Reset the active syncscan setting, though. * 当重新扫描时,希望保持先前的startblock设置,以便重新回退游标,这样不会产生令人惊讶的结果。 * 不过,注意重置活动syncscan的设置。 */ scan->rs_syncscan = (allow_sync && synchronize_seqscans); } else if (allow_sync && synchronize_seqscans) { scan->rs_syncscan = true; scan->rs_startblock = ss_get_location(scan->rs_rd, scan->rs_nblocks); } else { scan->rs_syncscan = false; scan->rs_startblock = 0; } scan->rs_numblocks = InvalidBlockNumber; scan->rs_inited = false; scan->rs_ctup.t_data = NULL; ItemPointerSetInvalid(&scan->rs_ctup.t_self); scan->rs_cbuf = InvalidBuffer; scan->rs_cblock = InvalidBlockNumber; /* page-at-a-time fields are always invalid when not rs_inited */ //page-at-a-time相关的域通常设置为无效值 /* * copy the scan key, if appropriate * 如需要,拷贝扫描键 */ if (key != NULL) memcpy(scan->rs_key, key, scan->rs_nkeys * sizeof(ScanKeyData)); /* * Currently, we don't have a stats counter for bitmap heap scans (but the * underlying bitmap index scans will be counted) or sample scans (we only * update stats for tuple fetches there) * 目前,没有一个用于位图堆扫描的统计计数器(但是将计算底层的位图索引扫描) * 或样本扫描(只对那里的元组读取更新统计数据) */ if (!scan->rs_bitmapscan && !scan->rs_samplescan) pgstat_count_heap_scan(scan->rs_rd);}
三、跟踪分析
测试脚本如下
testdb=# explain select dw.*,grjf.grbh,grjf.xm,grjf.ny,grjf.je testdb-# from t_dwxx dw,lateral (select gr.grbh,gr.xm,jf.ny,jf.je testdb(# from t_grxx gr inner join t_jfxx jf testdb(# on gr.dwbh = dw.dwbh testdb(# and gr.grbh = jf.grbh) grjftestdb-# order by dw.dwbh; QUERY PLAN ------------------------------------------------------------------------------------------ Sort (cost=20070.93..20320.93 rows=100000 width=47) Sort Key: dw.dwbh -> Hash Join (cost=3754.00..8689.61 rows=100000 width=47) Hash Cond: ((gr.dwbh)::text = (dw.dwbh)::text) -> Hash Join (cost=3465.00..8138.00 rows=100000 width=31) Hash Cond: ((jf.grbh)::text = (gr.grbh)::text) -> Seq Scan on t_jfxx jf (cost=0.00..1637.00 rows=100000 width=20) -> Hash (cost=1726.00..1726.00 rows=100000 width=16) -> Seq Scan on t_grxx gr (cost=0.00..1726.00 rows=100000 width=16) -> Hash (cost=164.00..164.00 rows=10000 width=20) -> Seq Scan on t_dwxx dw (cost=0.00..164.00 rows=10000 width=20)(11 rows)
启动gdb,设置断点,进入SeqNext
(gdb) b SeqNextBreakpoint 1 at 0x7156b2: file nodeSeqscan.c, line 60.(gdb) cContinuing.Breakpoint 1, SeqNext (node=0x2ed1588) at nodeSeqscan.c:6060 scandesc = node->ss.ss_currentScanDesc;
变量赋值
60 scandesc = node->ss.ss_currentScanDesc;(gdb) n61 estate = node->ss.ps.state;(gdb) 62 direction = estate->es_direction;(gdb) 63 slot = node->ss.ss_ScanTupleSlot;(gdb) 65 if (scandesc == NULL)
scandesc为NULL,进入初始化,调用heap_beginscan
(gdb) p scandesc$1 = (HeapScanDesc) 0x0
进入heap_beginscan/heap_beginscan_internal函数
(gdb) n71 scandesc = heap_beginscan(node->ss.ss_currentRelation,(gdb) stepheap_beginscan (relation=0x7fb27c488a90, snapshot=0x2e0b8f0, nkeys=0, key=0x0) at heapam.c:14071407 return heap_beginscan_internal(relation, snapshot, nkeys, key, NULL,(gdb) stepheap_beginscan_internal (relation=0x7fb27c488a90, snapshot=0x2e0b8f0, nkeys=0, key=0x0, parallel_scan=0x0, allow_strat=true, allow_sync=true, allow_pagemode=true, is_bitmapscan=false, is_samplescan=false, temp_snap=false) at heapam.c:14691469 RelationIncrementReferenceCount(relation);
heap_beginscan_internal->增加relation参考计数
1469 RelationIncrementReferenceCount(relation);(gdb) n
heap_beginscan_internal->初始化HeapScanDesc结构体
1474 scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));(gdb) 1476 scan->rs_rd = relation;(gdb) 1477 scan->rs_snapshot = snapshot;(gdb) 1478 scan->rs_nkeys = nkeys;(gdb) 1479 scan->rs_bitmapscan = is_bitmapscan;(gdb) 1480 scan->rs_samplescan = is_samplescan;(gdb) 1481 scan->rs_strategy = NULL; /* set in initscan */(gdb) 1482 scan->rs_allow_strat = allow_strat;(gdb) 1483 scan->rs_allow_sync = allow_sync;(gdb) 1484 scan->rs_temp_snap = temp_snap;(gdb) 1485 scan->rs_parallel = parallel_scan;(gdb) 1490 scan->rs_pageatatime = allow_pagemode && IsMVCCSnapshot(snapshot);(gdb) 1503 if (!is_bitmapscan)
heap_beginscan_internal->非位图扫描,谓词锁定
1503 if (!is_bitmapscan)(gdb) p is_bitmapscan$2 = false(gdb) n1504 PredicateLockRelation(relation, snapshot);(gdb) 1507 scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
heap_beginscan_internal->进入initscan函数
(gdb) n1513 if (nkeys > 0)(gdb) 1516 scan->rs_key = NULL;(gdb) 1518 initscan(scan, key, false);(gdb) stepinitscan (scan=0x2ee4568, key=0x0, keep_startblock=false) at heapam.c:236236 if (scan->rs_parallel != NULL)
heap_beginscan_internal->relation的大小相对于buffer并不大(<25%),不使用访问策略(批量读取)&同步扫描
(gdb) n239 scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_rd);(gdb) 253 if (!RelationUsesLocalBuffers(scan->rs_rd) &&(gdb) 254 scan->rs_nblocks > NBuffers / 4)(gdb) 253 if (!RelationUsesLocalBuffers(scan->rs_rd) &&(gdb) 260 allow_strat = allow_sync = false;
heap_beginscan_internal->设置其他变量
312 if (key != NULL)(gdb) 320 if (!scan->rs_bitmapscan && !scan->rs_samplescan)(gdb) 321 pgstat_count_heap_scan(scan->rs_rd);(gdb) 322 }(gdb)
heap_beginscan_internal->回到heap_beginscan_internal,完成初始化
(gdb) nheap_beginscan_internal (relation=0x7fb27c488a90, snapshot=0x2e0b8f0, nkeys=0, key=0x0, parallel_scan=0x0, allow_strat=true, allow_sync=true, allow_pagemode=true, is_bitmapscan=false, is_samplescan=false, temp_snap=false) at heapam.c:15201520 return scan;(gdb) p *scan$4 = {rs_rd = 0x7fb27c488a90, rs_snapshot = 0x2e0b8f0, rs_nkeys = 0, rs_key = 0x0, rs_bitmapscan = false, rs_samplescan = false, rs_pageatatime = true, rs_allow_strat = true, rs_allow_sync = true, rs_temp_snap = false, rs_nblocks = 726, rs_startblock = 0, rs_numblocks = 4294967295, rs_strategy = 0x0, rs_syncscan = false, rs_inited = false, rs_ctup = {t_len = 2139062143, t_self = {ip_blkid = {bi_hi = 65535, bi_lo = 65535}, ip_posid = 0}, t_tableOid = 16742, t_data = 0x0}, rs_cblock = 4294967295, rs_cbuf = 0, rs_parallel = 0x0, rs_cindex = 2139062143, rs_ntuples = 2139062143, rs_vistuples = {32639 }}(gdb)
DONE!
四、参考资料
PG Document:Query Planning