python怎么使用dabl实现数据处理分析及ML自动化
这篇文章主要讲解了"python怎么使用dabl实现数据处理分析及ML自动化",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"python怎么使用dabl实现数据处理分析及ML自动化"吧!
dabl
dabl 是一个数据分析基线库,可以让机器学习建模更容易,它包括各种特性,我们只需几行 Python 代码就可以处理、分析和建模。
安装
pip install dabl
1、数据预处理
dabl 在几行 Python 代码中自动执行数据预处理管道。dabl执行的预处理步骤包括识别缺失值、删除冗余特征以及理解特征的数据类型以进一步执行特征工程。
dabl检测到的特征类型列表包括:
continuous
categorical
date
Dirty_float
Low_card_int
free_string
Useless
dabl 使用一行 Python 代码将所有数据集特征自动归类为上述数据类型。
df_clean = dabl.clean(df, verbose=1)
原始 Titanic 数据集有12个特征,dabl 会自动将它们分类为上述数据类型,以便进行进一步的特征工程。dabl还提供了根据需求更改任何特性的数据类型的功能。
db_clean = dabl.clean(db, type_hints={"Cabin": "categorical"})
可以使用 detect_types() 函数查看为每个特征分配的数据类型。
2、探索性数据分析
EDA 是数据科学模型开发生命周期的重要组成部分。Seaborn、Matplotlib 等是执行各种分析以更好地理解数据集的可视化库。dabl 使 EDA 变得非常简单且节省大量时间。
dabl.plot(df_clean, target_col="Survived")
dabl 中 plot()函数可以通过绘制各种图来实现可视化,包括:
目标分布的条形图
散点对图
线性判别分析
dabl 自动对数据集执行 PCA,并显示数据集中所有特征的判别 PCA 图。
3、建模
dabl 在训练数据上训练各种基线机器学习算法来加速建模工作流程,并返回性能最佳的模型。dabl 做出简单的假设并为基线模型生成指标。
可以使用 dabl 中 SimpleClassifier() 函数进行建模,它很快就可以返回最佳模型。
感谢各位的阅读,以上就是"python怎么使用dabl实现数据处理分析及ML自动化"的内容了,经过本文的学习后,相信大家对python怎么使用dabl实现数据处理分析及ML自动化这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!