千家信息网

TensorFLow怎么用Saver保存和恢复变量

发表于:2025-01-17 作者:千家信息网编辑
千家信息网最后更新 2025年01月17日,本篇内容主要讲解"TensorFLow怎么用Saver保存和恢复变量",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"TensorFLow怎么用Saver保存
千家信息网最后更新 2025年01月17日TensorFLow怎么用Saver保存和恢复变量

本篇内容主要讲解"TensorFLow怎么用Saver保存和恢复变量",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"TensorFLow怎么用Saver保存和恢复变量"吧!

建立文件tensor_save.py, 保存变量v1,v2的tensor到checkpoint files中,名称分别设置为v3,v4。

import tensorflow as tf# Create some variables.v1 = tf.Variable(3, name="v1")v2 = tf.Variable(4, name="v2")# Create modely=tf.add(v1,v2)# Add an op to initialize the variables.init_op = tf.initialize_all_variables()# Add ops to save and restore all the variables.saver = tf.train.Saver({'v3':v1,'v4':v2})# Later, launch the model, initialize the variables, do some work, save the# variables to disk.with tf.Session() as sess: sess.run(init_op) print("v1 = ", v1.eval()) print("v2 = ", v2.eval()) # Save the variables to disk. save_path = saver.save(sess, "f:/tmp/model.ckpt") print ("Model saved in file: ", save_path)

建立文件tensor_restror.py, 将checkpoint files中名称分别为v3,v4的tensor分别恢复到变量v3,v4中。

import tensorflow as tf# Create some variables.v3 = tf.Variable(0, name="v3")v4 = tf.Variable(0, name="v4")# Create modely=tf.mul(v3,v4)# Add ops to save and restore all the variables.saver = tf.train.Saver()# Later, launch the model, use the saver to restore variables from disk, and# do some work with the model.with tf.Session() as sess: # Restore variables from disk. saver.restore(sess, "f:/tmp/model.ckpt") print ("Model restored.") print ("v3 = ", v3.eval()) print ("v4 = ", v4.eval()) print ("y = ",sess.run(y))

到此,相信大家对"TensorFLow怎么用Saver保存和恢复变量"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

0