千家信息网

DialoGPT是什么

发表于:2025-01-16 作者:千家信息网编辑
千家信息网最后更新 2025年01月16日,本篇内容介绍了"DialoGPT是什么"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!引言Large-
千家信息网最后更新 2025年01月16日DialoGPT是什么

本篇内容介绍了"DialoGPT是什么"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

  引言

  Large-scale pretraining for dialogue

  DialoGPT是基于GPT-2的对话生成预训练模型,在reddit数据集上训练

  假定已经设置好环境,

  在eval_util.py中增加 inference函数

  def inference_model_results(model, tokenizer, inference_dataloader, args):

  # use the same signature with eval_model_generation

  logger.info('compute eval model loss, using eval mode, '

  'please change it back to train after calling this function')

  model.eval()

  tot_sample = []

  with torch.no_grad():

  for step, batch in enumerate(inference_dataloader):

  batch = tuple(t.to(args.device) for t in batch)

  input_ids, position_ids, token_ids, label_ids, src_len, _ = batch

  if args.no_token_id:

  token_ids = None

  n_sample = input_ids.shape[0]

  logits = model.inference(input_ids, position_ids, token_ids)

  def decode(batch_data, tokenizer, input_flag):

  results = []

  batch_data = batch_data.cpu().data.numpy()

  for one_logits in batch_data: # [sentence_len, vocabulary_size]

  if not input_flag:

  word_ids = np.argmax(one_logits, axis=1)

  else:

  word_ids = one_logits

  words = []

  for id in word_ids:

  if tokenizer.decoder[id] != "<|endoftext|>":

  words.append(tokenizer.decoder[id])

  else:

  break

  output_words = []

  for word in words:

  output_words.append(word[1:]) if word.startswith("Ġ") else output_words.append(word)

  results.append(" ".join(output_words))

  return results

  posts = decode(input_ids, tokenizer, True)

  inferences = decode(logits, tokenizer, False)

  tot_sample.append(n_sample)

  logger.info("model inference results")

  for index in range(len(posts)):

  print("post: ", posts[index])

  print("inference: ", inferences[index])

  # print(inferences)

  break

  # todo

  return None

  在modeling_gpt2.py中class GPT2LMHeadModel(GPT2PreTrainedModel)中增加inference函数

  def inference(self, input_ids, position_ids=None, token_type_ids=None, past=None):

  hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)

  lm_logits = self.lm_head(hidden_states)

  return lm_logits

  自定义inference_LSP.py 文件

  文件内容

  # Copyright (c) Microsoft Corporation.

  # Licensed under the MIT license.

  '''

  * @Desc: train GPT2 from scratch/ fine tuning.

  Modified based on Huggingface GPT-2 implementation

  '''

  import json

  import os

  import sys

  import argparse

  import logging

  import time

  import tqdm

  import datetime

  import torch

  import numpy as np

  from os.path import join

  from torch.distributed import get_rank, get_world_size

  from lsp_model import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, Adam

  from gpt2_training.train_utils import load_model, boolean_string, set_lr, get_eval_list_same_length

  from gpt2_training.eval_utils import eval_model_loss, inference_model_results

  from data_loader import BucketingDataLoader, DynamicBatchingLoader, DistributedBucketingDataLoader

  from gpt2_training.distributed import all_reduce_and_rescale_tensors, all_gather_list

  os.environ['CUDA_VISIBLE_DEVICES'] = "0"

  logging.basicConfig(

  format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',

  datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)

  logger = logging.getLogger(__name__)

  INF = 100000000

  CACHE_EMPTY_STEP = 10000

  EVAL_STEP = 10000

  #########################################################################

  # Prepare Parser

  ##########################################################################

  parser = argparse.ArgumentParser()

  parser.add_argument('--model_name_or_path', type=str, required=True,

  help='pretrained model name or path to local checkpoint')

  parser.add_argument("--seed", type=int, default=42)

  parser.add_argument("--max_seq_length", type=int, default=128)

  parser.add_argument("--init_checkpoint", type=str, required=True)

  parser.add_argument("--inference_input_file", type=str, required=True)

  parser.add_argument("--inference_batch_size", type=int, default=8)

  parser.add_argument("--num_optim_steps", type=int, default=1000000,

  help="new API specifies num update steps")

  parser.add_argument("--fp16", type=boolean_string, default=True)

  parser.add_argument("--normalize_data", type=boolean_string, default=True)

  parser.add_argument("--loss_scale", type=float, default=0)

  parser.add_argument("--no_token_id", type=boolean_string, default=True)

  parser.add_argument("--log_dir", type=str, required=True)

  # distributed

  parser.add_argument('--local_rank', type=int, default=-1,

  help='for torch.distributed')

  parser.add_argument('--config', help='JSON config file')

  # do normal parsing

  args = parser.parse_args()

  if args.config is not None:

  # override argparse defaults by config JSON

  opts = json.load(open(args.config))

  for k, v in opts.items():

  if isinstance(v, str):

  # PHILLY ENV special cases

  if 'PHILLY_JOB_DIRECTORY' in v:

  v = v.replace('PHILLY_JOB_DIRECTORY',

  os.environ['PHILLY_JOB_DIRECTORY'])

  elif 'PHILLY_LOG_DIRECTORY' in v:

  v = v.replace('PHILLY_LOG_DIRECTORY',

  os.environ['PHILLY_LOG_DIRECTORY'])

  setattr(args, k, v)

  # command line should override config JSON

  argv = sys.argv[1:]

  overrides, _ = parser.parse_known_args(argv)

  for k, v in vars(overrides).items():

  if f'--{k}' in argv:

  setattr(args, k, v)

  setattr(args, 'local_rank', overrides.local_rank)

  if args.local_rank == -1:

  logger.info('CUDA available? {}'.format(str(torch.cuda.is_available())))

  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

  n_gpu = torch.cuda.device_count()

  args.device, args.n_gpu = device, n_gpu

  else:郑州妇科医院哪家好 http://www.120zzzy.com/

  # distributed training

  torch.cuda.set_device(args.local_rank)

  device = torch.device("cuda", args.local_rank)

  # Initializes the distributed backend which will take care of

  # sychronizing nodes/GPUs

  torch.distributed.init_process_group(backend='nccl')

  n_gpu = torch.distributed.get_world_size()

  args.device, args.n_gpu = device, 1

  logger.info("device: {} n_gpu: {}, distributed training: {}, "

  "16-bits training: {}".format(

  device, n_gpu, bool(args.local_rank != -1), args.fp16))

  timestamp = datetime.datetime.now().strftime('%Y-%m-%d%H%M%S')

  log_dir = args.log_dir

  logger.info('Input Argument Information')

  args_dict = vars(args)

  for a in args_dict:

  logger.info('%-28s %s' % (a, args_dict[a]))

  #########################################################################

  # Prepare Data Set

  ##########################################################################

  print("Prepare Data")

  enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path)

  config = GPT2Config.from_json_file(

  join(args.model_name_or_path, 'config.json'))

  inference_dataloader_loss = DynamicBatchingLoader(

  args.inference_input_file, enc, args.normalize_data,

  args.inference_batch_size, args.max_seq_length)

  inference_dataloader_gen = get_eval_list_same_length(

  args.inference_input_file, enc, args.inference_batch_size, True)

  # eval_dataloader_loss = DynamicBatchingLoader(

  # args.eval_input_file, enc, args.normalize_data,

  # args.eval_batch_size, args.max_seq_length)

  #

  # eval_dataloader_gen = get_eval_list_same_length(

  # args.eval_input_file, enc, args.eval_batch_size, True)

  #########################################################################

  # Prepare Model

  ##########################################################################

  print("Prepare Model")

  logger.info("Prepare Model")

  model = load_model(GPT2LMHeadModel(config), args.init_checkpoint,

  args, verbose=True)

  if args.local_rank != -1:

  # when from scratch make sure initial models are the same

  params = [p.data for p in model.parameters()]

  all_reduce_and_rescale_tensors(params, float(torch.distributed.get_world_size()))

  no_decay = ['bias', 'ln'] # no decay for bias and LayerNorm (ln)

  #########################################################################

  # Inference !

  ##########################################################################

  print("Model inference")

  logger.info("Model inference")

  inference_logger = open(join(log_dir, 'inference_log.txt'), 'a+', buffering=1)

  epoch = 0

  if args.local_rank != -1:

  n_gpu = 1

  # todo modify loss out.

  results = inference_model_results(model, enc, inference_dataloader_loss, args)

  # todo output format

  # print('{},{},{},{},{}'.format(epoch + 1, global_step + 1, step + 1, eval_loss, eval_ppl), file=inference_logger)

  logger.info("inference_final_results:")

  if results is None:

  logger.info("current results are None")

  else:

  logger.info(results)

  inference_logger.close()

  python inference_LSP.py --model_name_or_path ./models/medium/ --init_checkpoint ./12_5_self_output/GPT2.1e-05.8.3gpu.2019-12-04225327/GP2-pretrain-step-50000.pkl --inference_input_file ./selfdata/attack_chatbot.tsv --log_dir inference_logs_dir/

  Inference

  python inference_LSP.py --model_name_or_path ./models/medium/ --init_checkpoint ./12_5_self_output/GPT2.1e-05.8.3gpu.2019-12-04225327/GP2-pretrain-step-50000.pkl --inference_input_file ./selfdata/attack_chatbot.tsv --log_dir inference_logs_dir/

  validset.tsv:

  -model_name_or_path ./models/medium/ --init_checkpoint ./12_5_self_output/GPT2.1e-05.8.3gpu.2019-12-04225327/GP2-pretrain-step-50000.pkl --inference_input_file ./selfdata/validset.tsv --log_dir inference_logs_dir/

  ./models/medium/medium_ft.pkl

"DialoGPT是什么"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!

0