如何用Python代码减少Python所需的内存
如何用Python代码减少Python所需的内存,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
在执行程序时,如果内存中有大量活动的对象,就可能出现内存问题,尤其是在可用内存总量有限的情况下。在本文中,我们将讨论缩小对象的方法,大幅减少 Python 所需的内存。
为了简便起见,我们以一个表示点的 Python 结构为例,它包括 x、y、z 坐标值,坐标值可以通过名称访问。
Dict
在小型程序中,特别是在脚本中,使用 Python 自带的 dict 来表示结构信息非常简单方便:
>>> ob = {'x':1, 'y':2, 'z':3}>>> x = ob['x']>>> ob['y'] = y
由于在 Python 3.6 中 dict 的实现采用了一组有序键,因此其结构更为紧凑,更深得人心。但是,让我们看看 dict 在内容中占用的空间大小:
>>> print(sys.getsizeof(ob))240
如上所示,dict 占用了大量内存,尤其是如果突然虚需要创建大量实例时:
类实例
有些人希望将所有东西都封装到类中,他们更喜欢将结构定义为可以通过属性名访问的类:
class Point: # def __init__(self, x, y, z): self.x = x self.y = y self.z = z>>> ob = Point(1,2,3)>>> x = ob.x>>> ob.y = y
类实例的结构很有趣:
在上表中,__weakref__ 是该列表的引用,称之为到该对象的弱引用(weak reference);字段 __dict__ 是该类的实例字典的引用,其中包含实例属性的值(注意在 64-bit 引用平台中占用 8 字节)。从 Python 3.3 开始,所有类实例的字典的键都存储在共享空间中。这样就减少了内存中实例的大小:
>>> print(sys.getsizeof(ob), sys.getsizeof(ob.__dict__)) 56 112
因此,大量类实例在内存中占用的空间少于常规字典(dict):
不难看出,由于实例的字典很大,所以实例依然占用了大量内存。
带有 __slots__ 的类实例
为了大幅降低内存中类实例的大小,我们可以考虑干掉 __dict__ 和__weakref__。为此,我们可以借助 __slots__:
class Point: __slots__ = 'x', 'y', 'z' def __init__(self, x, y, z): self.x = x self.y = y self.z = z>>> ob = Point(1,2,3)>>> print(sys.getsizeof(ob))64
如此一来,内存中的对象就明显变小了:
在类的定义中使用了 __slots__ 以后,大量实例占据的内存就明显减少了:
实例数
目前,这是降低类实例占用内存的主要方式。
这种方式减少内存的原理为:在内存中,对象的标题后面存储的是对象的引用(即属性值),访问这些属性值可以使用类字典中的特殊描述符:
>>> pprint(Point.__dict__)mappingproxy( .................................... 'x':, 'y': , 'z': })
为了自动化使用 __slots__ 创建类的过程,你可以使用库namedlist(https://pypi.org/project/namedlist)。namedlist.namedlist 函数可以创建带有 __slots__ 的类:
>>> Point = namedlist('Point', ('x', 'y', 'z'))
还有一个包 attrs(https://pypi.org/project/attrs),无论使用或不使用 __slots__ 都可以利用这个包自动创建类。
元组
Python 还有一个自带的元组(tuple)类型,代表不可修改的数据结构。元组是固定的结构或记录,但它不包含字段名称。你可以利用字段索引访问元组的字段。在创建元组实例时,元组的字段会一次性关联到值对象:
>>> ob = (1,2,3)>>> x = ob[0]>>> ob[1] = y # ERROR
元组实例非常紧凑:
>>> print(sys.getsizeof(ob))72
由于内存中的元组还包含字段数,因此需要占据内存的 8 个字节,多于带有 __slots__ 的类:
命名元组
由于元组的使用非常广泛,所以终有一天你需要通过名称访问元组。为了满足这种需求,你可以使用模块 collections.namedtuple。
namedtuple 函数可以自动生成这种类:
>>> Point = namedtuple('Point', ('x', 'y', 'z'))
如上代码创建了元组的子类,其中还定义了通过名称访问字段的描述符。对于上述示例,访问方式如下:
class Point(tuple): # @property def _get_x(self): return self[0] @property def _get_y(self): return self[1] @property def _get_z(self): return self[2] # def __new__(cls, x, y, z): return tuple.__new__(cls, (x, y, z))
这种类所有的实例所占用的内存与元组完全相同。但大量的实例占用的内存也会稍稍多一些:
记录类:不带循环 GC 的可变更命名元组
由于元组及其相应的命名元组类能够生成不可修改的对象,因此类似于 ob.x 的对象值不能再被赋予其他值,所以有时还需要可修改的命名元组。由于 Python 没有相当于元组且支持赋值的内置类型,因此人们想了许多办法。在这里我们讨论一下记录类(recordclass,https://pypi.org/project/recordclass),它在 StackoverFlow 上广受好评(https://stackoverflow.com/questions/29290359/existence-of-mutable-named-tuple-in)。
此外,它还可以将对象占用的内存量减少到与元组对象差不多的水平。
recordclass 包引入了类型 recordclass.mutabletuple,它几乎等价于元组,但它支持赋值。它会创建几乎与 namedtuple 完全一致的子类,但支持给属性赋新值(而不需要创建新的实例)。recordclass 函数与 namedtuple 函数类似,可以自动创建这些类:
>>> Point = recordclass('Point', ('x', 'y', 'z')) >>> ob = Point(1, 2, 3)
类实例的结构也类似于 tuple,但没有 PyGC_Head:
在默认情况下,recordclass 函数会创建一个类,该类不参与垃圾回收机制。一般来说,namedtuple 和 recordclass 都可以生成表示记录或简单数据结构(即非递归结构)的类。在 Python 中正确使用这二者不会造成循环引用。因此,recordclass 生成的类实例默认情况下不包含 PyGC_Head 片段(这个片段是支持循环垃圾回收机制的必需字段,或者更准确地说,在创建类的 PyTypeObject 结构中,flags 字段默认情况下不会设置 Py_TPFLAGS_HAVE_GC 标志)。
大量实例占用的内存量要小于带有 __slots__ 的类实例:
dataobject
recordclass 库提出的另一个解决方案的基本想法为:内存结构采用与带 __slots__ 的类实例同样的结构,但不参与循环垃圾回收机制。这种类可以通过 recordclass.make_dataclass 函数生成:
>>> Point = make_dataclass('Point', ('x', 'y', 'z'))
这种方式创建的类默认会生成可修改的实例。
另一种方法是从 recordclass.dataobject 继承:
class Point(dataobject): x:int y:int z:int
这种方法创建的类实例不会参与循环垃圾回收机制。内存中实例的结构与带有 __slots__ 的类相同,但没有 PyGC_Head:
>>> ob = Point(1,2,3)>>> print(sys.getsizeof(ob))40
如果想访问字段,则需要使用特殊的描述符来表示从对象开头算起的偏移量,其位置位于类字典内:
mappingproxy({'__new__':, ....................................... 'x': , 'y': , 'z': })
大量实例占用的内存量在 CPython 实现中是最小的:
Cython
还有一个基于 Cython(https://cython.org/)的方案。该方案的优点是字段可以使用 C 语言的原子类型。访问字段的描述符可以通过纯 Python 创建。例如:
cdef class Python: cdef public int x, y, z def __init__(self, x, y, z): self.x = x self.y = y self.z = z
本例中实例占用的内存更小:
>>> ob = Point(1,2,3)>>> print(sys.getsizeof(ob))32
内存结构如下:
大量副本所占用的内存量也很小:
但是,需要记住在从 Python 代码访问时,每次访问都会引发 int 类型和 Python 对象之间的转换。
Numpy
使用拥有大量数据的多维数组或记录数组会占用大量内存。但是,为了有效地利用纯 Python 处理数据,你应该使用 Numpy 包提供的函数。
>>> Point = numpy.dtype(('x', numpy.int32), ('y', numpy.int32), ('z', numpy.int32)])
一个拥有 N 个元素、初始化成零的数组可以通过下面的函数创建:
>>> points = numpy.zeros(N, dtype=Point)
内存占用是最小的:
一般情况下,访问数组元素和行会引发 Python 对象与 C 语言 int 值之间的转换。如果从生成的数组中获取一行结果,其中包含一个元素,其内存就没那么紧凑了:
>>> sys.getsizeof(points[0]) 68
因此,如上所述,在 Python 代码中需要使用 numpy 包提供的函数来处理数组。
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。