千家信息网

Python如何实现数据透视表

发表于:2024-11-28 作者:千家信息网编辑
千家信息网最后更新 2024年11月28日,这篇文章主要为大家展示了"Python如何实现数据透视表",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"Python如何实现数据透视表"这篇文章吧。用Pyt
千家信息网最后更新 2024年11月28日Python如何实现数据透视表

这篇文章主要为大家展示了"Python如何实现数据透视表",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"Python如何实现数据透视表"这篇文章吧。

用Python里的Pandas可以实现,虽然感觉Excel更方便

1.groupby + agg

不够直观,不好看

对贷款年份,贷款种类创建数据透视

train_data.groupby(['year_of_loan', 'class']).agg(d_roat =('isDefault', 'mean'))

2. crosstab

pandas.crosstab(index, columns,values, rownames=None, colnames,                                 aggfunc, margins, margins_name, dropna, normalize)

主要用到的参数:

index:选哪个变量做数据透视表的行

columns:选哪个变量做数据透视表的列

values:要聚合的值

aggfunc:使用的聚合函数

margins:是否添加汇总列/行

margins_name:汇总行/列的名字

例子

对贷款年份,贷款种类创建数据透视

pd.crosstab(train_data['year_of_loan'], train_data['class'], train_data['loan_id'], aggfunc='count',margins = True, margins_name = '合计')


可以直接看出交叉组合之后违约比例

pd.crosstab(train_data['year_of_loan'], train_data['class'], train_data['isDefault'], aggfunc='mean')

3.groupby + pivot

train_data.groupby(['year_of_loan', 'class'], as_index = False)['isDefault'].mean().pivot('year_of_loan', 'class', 'isDefault')

pivot_table

pandas.pivot_table(data, values, index, columns, aggfunc, fill_value,                                         margins, dropna, margins_name, observed, sort)

常用参数与crosstab一致

例子

实现同样的数据透视表

pandas.pivot_table(data, values, index, columns, aggfunc, fill_value,                                         margins, dropna, margins_name, observed, sort)

pd.pivot_table(train_data[['year_of_loan', 'class', 'isDefault']],                           values='isDefault', index=['year_of_loan'], columns=['class'],                            aggfunc='mean')

以上是"Python如何实现数据透视表"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!

0