千家信息网

Hadoop序列化怎么实现

发表于:2024-11-29 作者:千家信息网编辑
千家信息网最后更新 2024年11月29日,这篇文章主要讲解了"Hadoop序列化怎么实现",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Hadoop序列化怎么实现"吧!Hadoop I/ODat
千家信息网最后更新 2024年11月29日Hadoop序列化怎么实现

这篇文章主要讲解了"Hadoop序列化怎么实现",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Hadoop序列化怎么实现"吧!

Hadoop I/O

Data Integrity

Hdfs: % hadoop fs -cat hdfs://namenode/data/a.txt

LocalFS: % hadoop fs -cat file:///tmp/a.txt

generate crc check sum file

%hadoop fs -copyToLocal -crc /data/a.txt file:///data/a.txt

check sum file: .a.txt.crc is a hidden file.

Ref: CRC-32,循环冗余校验算法,error-detecting.

io.bytes.per.checksum is deprecated, it's dfs.bytes-per-checksum, default is 512, Must not be larger than dfs.stream-buffer-size,which is the size of buffer to stream files. The size of this buffer should probably be a multiple of hardware page size (4096 on Intel x86), and it determines how much data is buffered during read and write operations.

Data Compression

常用算法

读书时,hadoop支持四种压缩算法,如果调解空间和效率的话,-1 ~ -9,代表从最优速度到最优空间. 压缩算法支持在org.apache.hadoop.io.compress.*.

  1. deflate (.deflate), 就是常用的gzip, package ..DefaultCodec

  2. Gzip (.gz),在deflate格式加了文件头和尾. 压缩速度(适中),解压速度(适中),压缩效率(适中),package ..GzipCodec, both of java and native

  3. bzip2 (.bz2), 压缩速度(最差),< 解压速度(最差),压缩效率 (最好),特点是支持可切分(splitable),对map-red非常友好。,package ..BZip2Codec,java only

  4. LZO (.lzo), 压缩速度(最快),解压速度(最快),压缩效率(最差),,package com.hadoop.compressiojn.lzo.lzopCodec, native only

如果禁用原生库,使用hadoop.native.lib.

如果使用原生库,可能对象创建的成本较高,所以可以使用CodecPool,重复使用这些对象。

对于一个非常大的数据文件,存储如下方案:

  1. 使用支持切分的bzip2

  2. 手动切分,并使压缩后的part接近于block size.

  3. 使用Sequence File, 它支持压缩和切分

  4. 使用Avro数据文件,它也支持压缩和切分,而且增加了很多编程语言的可读写性。

如果Map-Red的output自动压缩:

conf.setBoolean ("mared.output.compress",true);conf.setClass("mapred.output.compression.codec",GzipCodec.class,CompressionCodec.class);

如果Map-Red的中间结果的自动压缩:

//or conf.setCompressMapOutput(true);conf.setBoolean ("mared.compress.map.output",true);//or conf.setMapOutputComressorClass(GzipCodec.class)conf.setClass("mapred.map.output.compression.codec",GzipCodec.class,CompressionCodec.class);

序列化(Serialization/Deserialization)

Writable and WritableComparable

// core class for hadooppublic interface Writable{       void write(DataOutput out) throw IOException;       void readFields(DataInput in) throw IOException;}public interface Comparable{       int compareTo(T o);}//core class for map-reduce shufflepublic interface WritableComparable extends Writable, Comparable {}// Samplepublic class MyWritableComparable implements WritableComparable {       // Some data       private int counter;       private long timestamp;              public void write(DataOutput out) throws IOException {         out.writeInt(counter);         out.writeLong(timestamp);       }              public void readFields(DataInput in) throws IOException {         counter = in.readInt();         timestamp = in.readLong();       }              public int compareTo(MyWritableComparable o) {         int thisValue = this.value;         int thatValue = o.value;         return (thisValue < thatValue ? -1 : (thisValue==thatValue ? 0 : 1));       }       public int hashCode() {         final int prime = 31;         int result = 1;         result = prime * result + counter;         result = prime * result + (int) (timestamp ^ (timestamp >>> 32));         return result       }}//optimize for stream comparasionpublic interface RawComparator extends Comparator{      // s1 start position, l1, length of bytes      public int compare(byte[] b1, int s1,int l1,byte[] b2,int s2,int l2);}public class WritableComparator implements RawComparator{}

Comparator RawComparator WritableComparator

WritableComparator 提供了原始compator的compare反序列化对象的实现,性能较差。不过它作为RawComparator实例的工厂:

RawComparator comparator = WritableComparator.get(IntWritable.class);

// 注册一个经过优化的比较算子。Register an optimized comparator for a WritableComparable implementation.

static void define(Class c, WritableComparator comparator);

// 获得一个WritableComparable的比较算子. Get a comparator for a WritableComparable implementation.

static WritableComparator get(Class c);

public MyWritableComparator extends WritableComparator{    static{        define(MyWritableComparable.class, new MyWritableComparator());    }    public MyWritableComparator {        super(MyWritableComparable.class);    }    @Override    public int compare(byte[] b1, int s1,int l1,byte[] b2,int s2,int l2){    }}


注: 要使static initializer被调用,除非有该类的实例被创建,或某静态方法或成员被访问。或者直接强制,代码如:

Class.forName("package.yourclass"); 它会强制初始化静态initializer.

Java Primitive Data Type wrapped by Writable

Extends from WritableComparable
  • BooleanWritable, 1

  • ByteWritable, 1,

  • BytesWritable,

  • IntWritable,4

  • VIntWritable,1~5

  • FloatWritable,4,

  • LongWritable,8,

  • VLongWritable,1~9

  • DoubleWritable,8

  • NullWritable,Immutable singletone.

  • Text,4~

  • MD5Hash,

  • ObjectWritable,

  • GenericWritable

Extends from Writable only
  • ArrayWritable

  • TwoDArrayWritable

  • AbstractMapWritable

  • MapWritable

  • SortedMapWritable

[Text]

值得一提的是Text的序列化方式是Zero-compressed encoding,这个看过一些资料,其实是一种编码方式,意图是省略掉高位0所占用的空间,对于小数,它能节省空间,对于大数会额外占用空间。相比压缩,它能比较快速。其实类似于VIntWritable, VLongWritable的编码方式。

- 如何选择变长和定长数值呢?

1. 定长适合分布非常均匀的数值(如hash),变长适合分布非常不均匀的数值。

2. 变长可以节省空间,而且可以在VIntWritable 和VLongWritable之间转换。

- Text和String的区别

1。String是char序列,Text是UTF-8的byte序列.

UTF-8类不能对字符串大于32767的进行utf-8编码。

(Indexing)索引:对于ASCII来说, Text和String是一样的, 对于Unicode就不同了。String类的长度是其所含char编码单元的长度,然而Text是UTF-8的字节码的长度。CodePointAt表示一个真正的Unicode字符,它可以是2char,4bytes的unicode。

Iteration(迭代): 将Text转换ByteBuffer,然后反复调用bytesToCodePoint()静态方法,可以取到整型的Unicode.

Mutable(易变性): 可以set,类似writable 和StringBuffer,getLength()返回有效字串长度,getbytes().length,返回空间大小。

[BytesWritable]

这是二进制数组的封装,类似于windows下的BSTR,都是前面一个整型表示字节长度,后面是字节的二进制流。

它也是mutable,getLength() != getBytes().length

[NullWritable]

NullWritable是Writable的一个特殊类型。它的序列化长度为0,其实只是一个占位符,既不读入,也不写出。只是存在于程序体中。

Immutable,是一个singleton。

[ObjectWritable]

ObjectWritable是Java的Array, String, 以及Primitive类型的通用封装 (注:不包含Integer)。它的序列化则使用java的类型序列化,写入类型信息等,比较占用空间。

通过两个特殊的构造:

public ObjectWritable(Object instance);

public ObjectWritable(Class declaredClass,Object instance);

举例子:

ObjectWritable objectw = new ObjectWritable(int.class,5);

[GenericWritable]

首先这是一个抽象类,需要被具象化才能使用。

观察下面这个实列,它以一种Union方式,显示的代理一个Writable实例,解决了Reduce函数的参数声明问题。

public class MyGenericWritable extends GenericWritable {    private static Class[] CLASSES = null;    static {        CLASSES = (Class[]) new Class[] {            IntWritable.class,            Text.class             //add as many different Writable class as you want        };    }    @Override    protected Class[] getTypes() {        return CLASSES;    }    @Override    public String toString() {        return "MyGenericWritable [getTypes()=" + Arrays.toString(getTypes()) + "]";    }    // override hashcode();}public class Reduce extends Reducer {    public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {}
[ArrayWritable /TwoDArrayWritable]

ArrayWritable aw = new ArrayWriable(Text.class);

[MapWritable / SortedMapWritable]

实现了java.util.Map 和SortedMap...

它的serialize, 使用先写map,然后后边每个类的类型,以id来替代,节省空间。这些都在父类AbstractMapWritable中实现。

集合小结:

1. 如果是单类型的列表,使用ArrayWritable就足够了

2。如果是把不同类型的Writable存储在一个列表中:

-- 可以使用GenerickWritable,把元素封装在一个ArrayWritable,这个貌似只能同一类型。

    public class MyGenericWritable extends GenericWritable {    private static Class[] CLASSES = null;    static {        CLASSES = (Class[]) new Class[] {            ArrayWritable.class,             //add as many different Writable class as you want        };    }    @Override    protected Class[] getTypes() {        return CLASSES;    }

-- 可以使用写一个仿照MapWritable的ListWritable

//注意实现hashcode,equals,toString, comparTo (if possible)

//hashcode尤其重要,HashPartitioner通常用hashcode来选择reduce分区,所以为你的类写一个比较好的hashcode非常必要。

public class ListWritable extends ArrayList implements Writable {

}

/** * @author cloudera * */public class ListWritable extends ArrayList implements Writable {        private List list = new ArrayList();                public void set(Writable writable){                list.add(writable);        }                @Override        public void readFields(DataInput in) throws IOException {                int nsize = in.readInt();                Configuration conf = new Configuration();                Text className = new Text();                while(nsize-->0){                                Class theClass = null;                        try {                                className.readFields(in);                                theClass = Class.forName(className.toString());                        } catch (ClassNotFoundException e) {                                // TODO Auto-generated catch block                                e.printStackTrace();                        }                        Writable w = (Writable)ReflectionUtils.newInstance(theClass,conf);                        w.readFields(in);                                                add(w);                                        }        }        @Override        public void write(DataOutput out) throws IOException {                Writable w = null;                out.writeInt(size());                for(int i = 0;i

感谢各位的阅读,以上就是"Hadoop序列化怎么实现"的内容了,经过本文的学习后,相信大家对Hadoop序列化怎么实现这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0