千家信息网

怎样使用sbt构建spark的项目

发表于:2025-01-25 作者:千家信息网编辑
千家信息网最后更新 2025年01月25日,本篇文章为大家展示了怎样使用sbt构建spark的项目,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。用Intellij 构建sbt项目 scala 使用2.1
千家信息网最后更新 2025年01月25日怎样使用sbt构建spark的项目

本篇文章为大家展示了怎样使用sbt构建spark的项目,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

用Intellij 构建sbt项目 scala 使用2.10.4

name := "gstorm"version := "1.0"version := "1.0"//Older Scala VersionscalaVersion := "2.10.4"val overrideScalaVersion = "2.11.8"val sparkVersion = "2.0.0"val sparkXMLVersion = "0.3.3"val sparkCsvVersion = "1.4.0"val sparkElasticVersion = "2.3.4"val sscKafkaVersion = "2.0.1"val sparkMongoVersion = "1.0.0"val sparkCassandraVersion = "1.6.0"//Override Scala Version to the above 2.11.8 versionivyScala := ivyScala.value map {  _.copy(overrideScalaVersion = true)}resolvers ++= Seq(  "All Spark Repository -> bintray-spark-packages" at "https://dl.bintray.com/spark-packages/maven/")libraryDependencies ++= Seq(  "org.apache.spark" %% "spark-core" % sparkVersion exclude("jline", "2.12"),  "org.apache.spark" %% "spark-sql" % sparkVersion excludeAll(ExclusionRule(organization = "jline"), ExclusionRule("name", "2.12")),  "org.apache.spark" %% "spark-hive" % sparkVersion,  "org.apache.spark" %% "spark-yarn" % sparkVersion,  "com.databricks" %% "spark-xml" % sparkXMLVersion,  "com.databricks" %% "spark-csv" % sparkCsvVersion,  "org.apache.spark" %% "spark-graphx" % sparkVersion,  "org.apache.spark" %% "spark-catalyst" % sparkVersion,  "org.apache.spark" %% "spark-streaming" % sparkVersion,  //  "com.101tec"           % "zkclient"         % "0.9",  "org.elasticsearch" %% "elasticsearch-spark" % sparkElasticVersion,  //  "org.apache.spark" %% "spark-streaming-kafka-0-10_2.11" % sscKafkaVersion,  "org.mongodb.spark" % "mongo-spark-connector_2.11" % sparkMongoVersion,  "com.stratio.datasource" % "spark-mongodb_2.10" % "0.11.1",  "dibbhatt" % "kafka-spark-consumer" % "1.0.8",  "net.liftweb" %% "lift-webkit" % "2.6.2")

WordCount.scala

import org.apache.spark.sql.SparkSessionobject WordCount {  def main(args: Array[String]): Unit = {    val spark = SparkSession      .builder()      .appName("Spark SQL Example")      .master("local[2]")      .config("spark.sql.codegen.WordCount", "true")      .getOrCreate()    val sc = spark.sparkContext    val textFile = sc.textFile("hdfs://hadoop:9000/words.txt")    val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)    wordCounts.collect.foreach(println)  }}

上述内容就是怎样使用sbt构建spark的项目,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注行业资讯频道。

0