千家信息网

怎么使用Python退火算法

发表于:2025-01-20 作者:千家信息网编辑
千家信息网最后更新 2025年01月20日,本篇内容介绍了"怎么使用Python退火算法"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、简介退
千家信息网最后更新 2025年01月20日怎么使用Python退火算法

本篇内容介绍了"怎么使用Python退火算法"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

  一、简介

  退火算法不言而喻,就是钢铁在淬炼过程中失温而成稳定态时的过程,热力学上温度(内能)越高原子态越不稳定,而温度有一个向低温区辐射降温的物理过程,当物质内能不再降低时候该物质原子态逐渐成为稳定有序态,这对我们从随机复杂问题中找出最优解有一定借鉴意义,将这个过程化为算法,具体参见其他资料。

  二、计算方程

  我们所要计算的方程是f(x) = (x - 2) * (x + 3) * (x + 8) * (x - 9),是一个一元四次方程,我们称为高次方程,当然这个函数的开口是向上的,那么在一个无限长的区间内我们可能找不出最大值点,因此我们尝试在较短区间内解最小值点,我们成为最优解。

  解法一:

  毫无疑问,数学方法多次求导基本可以解出,但是这个过程较复杂,还容易算错,我就不赘述了,读者有时间自己可以尝试解一下。

  解法二:

  这个解法就是暴力解决了,我们这里只求解区间[-10,10]上的最优解,直接随机200个点,再除以10(这样可以得到非整数横坐标),再依此计算其纵坐标f(x),min{f(x)}一下,用list的index方法找出最小值对应位置就行了,然后画出图形大致瞄一瞄。

  直接贴代码:

  import random

  import matplotlib.pyplot as plt

  list_x = []

  # for i in range(1):

  # #print(random.randint(0,100))

  # for i in range(0,100):

  # print("sss",i)

  #

  # list_x.append(random.randint(0,100))

  for i in range(-100,100):

  list_x.append(i/10)

  print("横坐标为:",list_x)

  print(len(list_x))

  list_y = []

  for x in list_x:

  # print(x)

  #y = x*x*x - 60*x*x -4*x +6

  y = (x - 2) * (x + 3) * (x + 8) * (x - 9)

  list_y.append(y)

  print("纵坐标为:",list_y)

  #经验证,这里算出来的结果6.5和最优解1549都是对的

  print("最小值为:",min(list_y))

  num = min(list_y)

  print("最优解:",list_y.index(num)/10)

  print("第",list_y.index(num)/10-10,"个位置取得最小值")

  plt.plot(list_x, list_y, label='NM')

  #plt.plot(x2, y2, label='Second Line')

  plt.xlabel('X') #横坐标标题

  plt.ylabel('Y') #纵坐标标题

  #plt.title('Interesting Graph\nCheck it out',loc="right") #图像标题

  #plt.title('Interesting Graph\nCheck it out')

  plt.legend() #显示Fisrt Line和Second Line(label)的设置

  plt.savefig('C:/Users/zhengyong/Desktop/1.png')

  plt.show()

  得到如下结果:

  那么我们得出最优解的坐标是(6.5,-1549.6875),结果先放这里,接下来用退火算法看能不能解出。

  解法三:

  我们看一张图(解法二中的方法得出的图),然后讲讲退火算法的最核心的思想。

  首先,先随机一个[-10.10]之间的随机解,作为初始解空间,比方说随机了一个位于[-2.5.2.5]中最高的那个点就是点1(横坐标为x1),他有对于的纵坐标的值y1,这时候我们把这个点的横坐标随机加或者减去一个值(注意这个值的大小很重要,我们先叫他随机移动值),加或者减后得到新的横坐标的值x2,再算出这个横坐标的对应纵坐标(y2),对比之前的纵坐标的大小,这里设置

  delta = y2-y1,发现无论怎样都是小于原先的纵坐标(前提是随机移动值足够小),这时候我们把新得到的x2赋值给x1,这时候现在的x2的值传给x1,x1是原先随机的值,这个过程可以重复iter_num 次,大小就根据自己的区间来。

  上述的整个过程是在一个温度下进行的,这个过程结束后我们用温度更新公式再次的更新温度,再去重复上述步骤。

  温度更新我是用的常用的公式是T(t)=aT0(t-1),其中0.85≦a≦0.99。也可用相应的热能衰减公式来计算,T(t)=T0/(1+lnt),t=1,2,3,…,这都是简单的状态更新方法。

  也就是说,不管你随机的是几我都能朝着优化的方向前进(前提是非最优点)。

  其次,点2 是同理的,区别在于他是局部最优解,那么跳出这个局部最优解的机制是什么呢?

  若初始点是(x3,y3),然后用上述方法得出(x4,y4),在点二处得到的delta肯定是大于0的,那么怎么办呢?当大于0的时候我们每次都有一定的概率来接受这个看起来不是最优的点,叫Metropolis准则,具体是这样的:

  这里的E就是y,T就是当前温度,delta小于0就是百分百接受新值,否者就是按照这个概率接受,当迭代多次的时候,每次向右移动的步长累加到点1 时候他就有可能找到最终的最优解了,步长是累加的但是概率是累成的,意味着这个概率很小,但是一旦迭代次数多久一定会跑出来到最优解处。

  最优,点3不解释了哈,和上面一样。

  那么我们上代码:

  #自己改写的退火算法计算方程(x - 2) * (x + 3) * (x + 8) * (x - 9)的计算方法

  #class没啥用

  import numpy as np

  import matplotlib.pyplot as plt

  from matplotlib import pyplot as plt

  #设置基本参数

  #T初始温度,T_stop,iter_num每个温度的迭代次数,Q温度衰减次数

  class Tuihuo_alg():

  def __init__(self,T_start,iter_num,T_stop,Q,xx,init_x):

  self.T_start = T_start

  self.iter =iter_num

  self.T_stop = T_stop

  self.Q = Q

  self.xx = xx

  self.init_x = init_x

  # def cal_x2y(self):

  # return (x - 2) * (x + 3) * (x + 8) * (x - 9)

  if __name__ == '__main__':

  def cal_x2y(x):

  #print((x - 2) * (x + 3) * (x + 8) * (x - 9))

  return (x - 2) * (x + 3) * (x + 8) * (x - 9)

  T_start = 1000

  iter_num = 1000

  T_stop = 1

  Q = 0.95

  K = 1

  l_boundary = -10

  r_boundary = 10

  #初始值郑州人流医院 http://www.029xads.com/

  xx = np.linspace(l_boundary, r_boundary, 300)

  yy = cal_x2y(xx)

  init_x =10 * ( 2 * np.random.rand() - 1)

  print("init_x:",init_x)

  t = Tuihuo_alg(T_start,iter_num,T_stop,Q,xx,init_x)

  val_list = [init_x]

  while T_start>T_stop:

  for i in range(iter_num):

  init_y = cal_x2y(init_x)

  #这个区间(2 * np.random.rand() - 1)本身是(-1,1),所以加上就是一个随机加或者减过程

  new_x = init_x + (2 * np.random.rand() - 1)

  if l_boundary <= new_x <= r_boundary:

  new_y = cal_x2y(new_x)

  #print("new_x:",new_x)

  #print('new_y:',new_y)

  delta = new_y - init_y #新减旧

  if delta < 0:

  init_x = new_x

  else:

  p = np.exp(-delta / (K * T_start))

  if np.random.rand() < p:

  init_x = new_x

  #print("new_x:",new_x)

  #print("当前温度:",T_start)

  T_start = T_start * Q

  print("最优解x是:", init_x) #这里最初写的是new_x,所以结果一直不对

  print("最优解是:", init_y)

  #比如我加上new_x,真假之间的误差实际就是最后一次的赋值"init_x = new_x"

  print("假最优解x是:", new_x) #这里最初写的是new_x,所以结果一直不对

  print("假最优解是:", new_y)

  xx = np.linspace(l_boundary,r_boundary,300)

  yy = cal_x2y(xx)

  plt.plot(xx, yy, label='Tuihuo')

  #plt.plot(x2, y2, label='Second Line')

  plt.xlabel('X for tuihuo') #横坐标标题

  plt.ylabel('Y for tuihuo') #纵坐标标题

  #plt.title('Interesting Graph\nCheck it out',loc="right") #图像标题

  #plt.title('Interesting Graph\nCheck it out')

  plt.legend() #显示Fisrt Line和Second Line(label)的设置

  plt.savefig('C:/Users/zhengyong/Desktop/1.png')

  plt.show()

  这里用了class,发现并不需要,但是不想改了,就这样吧。

  最优结果为:

  得出示意图

"怎么使用Python退火算法"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!

0