千家信息网

Tomcat中的连接器是如何设计的

发表于:2024-11-24 作者:千家信息网编辑
千家信息网最后更新 2024年11月24日,本篇文章给大家分享的是有关Tomcat中的连接器是如何设计的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。上期回顾上一篇文章《Tomca
千家信息网最后更新 2024年11月24日Tomcat中的连接器是如何设计的

本篇文章给大家分享的是有关Tomcat中的连接器是如何设计的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

上期回顾

上一篇文章《Tomcat在SpringBoot中是如何启动的》从main方法启动说起,窥探了SpringBoot是如何启动Tomcat的,在分析Tomcat中我们重点提到了,Tomcat主要包括2个组件,连接器(Connector)和容器(Container)以及他们的内部结构图,那么今天我们来分析下Tomcat中的连接器是怎么设计的以及它的作用是什么。

说明:本文tomcat版本是9.0.21,不建议零基础读者阅读。

从连接器(Connector)源码说起

既然是来解析连接器(Connector),那么我们直接从源码入手,后面所有源码我会剔除不重要部分,所以会忽略大部分源码细节,只关注流程。源码如下(高能预警,大量代码):

public class Connector extends LifecycleMBeanBase  {    public Connector() {        this("org.apache.coyote.http11.Http11NioProtocol");    }    public Connector(String protocol) {        boolean aprConnector = AprLifecycleListener.isAprAvailable() &&                AprLifecycleListener.getUseAprConnector();        if ("HTTP/1.1".equals(protocol) || protocol == null) {            if (aprConnector) {                protocolHandlerClassName = "org.apache.coyote.http11.Http11AprProtocol";            } else {                protocolHandlerClassName = "org.apache.coyote.http11.Http11NioProtocol";            }        } else if ("AJP/1.3".equals(protocol)) {            if (aprConnector) {                protocolHandlerClassName = "org.apache.coyote.ajp.AjpAprProtocol";            } else {                protocolHandlerClassName = "org.apache.coyote.ajp.AjpNioProtocol";            }        } else {            protocolHandlerClassName = protocol;        }        // Instantiate protocol handler        ProtocolHandler p = null;        try {            Class clazz = Class.forName(protocolHandlerClassName);            p = (ProtocolHandler) clazz.getConstructor().newInstance();        } catch (Exception e) {            log.error(sm.getString(                    "coyoteConnector.protocolHandlerInstantiationFailed"), e);        } finally {            this.protocolHandler = p;        }        // Default for Connector depends on this system property        setThrowOnFailure(Boolean.getBoolean("org.apache.catalina.startup.EXIT_ON_INIT_FAILURE"));    }

我们来看看Connector的构造方法,其实只做了一件事情,就是根据协议设置对应的ProtocolHandler,根据名称我们知道,这是协议处理类,所以连接器内部的一个重要子模块就是ProtocolHandler

关于生命周期

我们看到Connector继承了LifecycleMBeanBase,我们来看看Connector的最终继承关系:

我们看到最终实现的是Lifecycle接口,我们看看这个接口是何方神圣。我把其接口的注释拿下来解释下

/** * Common interface for component life cycle methods.  Catalina components * may implement this interface (as well as the appropriate interface(s) for * the functionality they support) in order to provide a consistent mechanism * to start and stop the component. *            start() *  ----------------------------- *  |                           | *  | init()                    | * NEW -»-- INITIALIZING        | * | |           |              |     ------------------«----------------------- * | |           |auto          |     |                                        | * | |          \|/    start() \|/   \|/     auto          auto         stop() | * | |      INITIALIZED --»-- STARTING_PREP --»- STARTING --»- STARTED --»---  | * | |         |                                                            |  | * | |destroy()|                                                            |  | * | --»-----«--    ------------------------«--------------------------------  ^ * |     |          |                                                          | * |     |         \|/          auto                 auto              start() | * |     |     STOPPING_PREP ----»---- STOPPING ------»----- STOPPED -----»----- * |    \|/                               ^                     |  ^ * |     |               stop()           |                     |  | * |     |       --------------------------                     |  | * |     |       |                                              |  | * |     |       |    destroy()                       destroy() |  | * |     |    FAILED ----»------ DESTROYING ---«-----------------  | * |     |                        ^     |                          | * |     |     destroy()          |     |auto                      | * |     --------»-----------------    \|/                         | * |                                 DESTROYED                     | * |                                                               | * |                            stop()                             | * ----»-----------------------------»------------------------------ * * Any state can transition to FAILED. * * Calling start() while a component is in states STARTING_PREP, STARTING or * STARTED has no effect. * * Calling start() while a component is in state NEW will cause init() to be * called immediately after the start() method is entered. * * Calling stop() while a component is in states STOPPING_PREP, STOPPING or * STOPPED has no effect. * * Calling stop() while a component is in state NEW transitions the component * to STOPPED. This is typically encountered when a component fails to start and * does not start all its sub-components. When the component is stopped, it will * try to stop all sub-components - even those it didn't start. * * Attempting any other transition will throw {@link LifecycleException}. * * 
* The {@link LifecycleEvent}s fired during state changes are defined in the * methods that trigger the changed. No {@link LifecycleEvent}s are fired if the * attempted transition is not valid.

这段注释翻译就是,这个接口是提供给组件声明周期管理的,并且提供了声明周期流转图。这里我们只需要知道正常流程即可:

New--->Init()---->Start()---->Stop()--->Destory()

从生命周期探索连接器

根据上面的生命周期说明,我们可以知道连接器(Connector)就是按照如此的声明周期管理的,所以我们找到了线索,所以连接器肯定会先初始化然后再启动。我们查看其initInternal()方法可以知道连接器初始化做了什么事情,源码如下:

    @Override    protected void initInternal() throws LifecycleException {        super.initInternal();        if (protocolHandler == null) {            throw new LifecycleException(                    sm.getString("coyoteConnector.protocolHandlerInstantiationFailed"));        }        // Initialize adapter        adapter = new CoyoteAdapter(this);        protocolHandler.setAdapter(adapter);        if (service != null) {            protocolHandler.setUtilityExecutor(service.getServer().getUtilityExecutor());        }        // Make sure parseBodyMethodsSet has a default        if (null == parseBodyMethodsSet) {            setParseBodyMethods(getParseBodyMethods());        }        if (protocolHandler.isAprRequired() && !AprLifecycleListener.isInstanceCreated()) {            throw new LifecycleException(sm.getString("coyoteConnector.protocolHandlerNoAprListener",                    getProtocolHandlerClassName()));        }        if (protocolHandler.isAprRequired() && !AprLifecycleListener.isAprAvailable()) {            throw new LifecycleException(sm.getString("coyoteConnector.protocolHandlerNoAprLibrary",                    getProtocolHandlerClassName()));        }        if (AprLifecycleListener.isAprAvailable() && AprLifecycleListener.getUseOpenSSL() &&                protocolHandler instanceof AbstractHttp11JsseProtocol) {            AbstractHttp11JsseProtocol jsseProtocolHandler =                    (AbstractHttp11JsseProtocol) protocolHandler;            if (jsseProtocolHandler.isSSLEnabled() &&                    jsseProtocolHandler.getSslImplementationName() == null) {                // OpenSSL is compatible with the JSSE configuration, so use it if APR is available                jsseProtocolHandler.setSslImplementationName(OpenSSLImplementation.class.getName());            }        }        try {            protocolHandler.init();        } catch (Exception e) {            throw new LifecycleException(                    sm.getString("coyoteConnector.protocolHandlerInitializationFailed"), e);        }    }}

根据上面源码,我们发现主要是处理protocolHandler并初始化它,同时我们注意到了protocolHandler 设置了一个适配器,我们看看这个适配器是做啥的,跟踪源码如下:

   /**     * The adapter, used to call the connector.     *     * @param adapter The adapter to associate     */    public void setAdapter(Adapter adapter);

这个注释已经说的很直白了,这个适配器就是用来调用连接器的。我们再继续看看protocolHandler的初始化方法

 /**     * Endpoint that provides low-level network I/O - must be matched to the     * ProtocolHandler implementation (ProtocolHandler using NIO, requires NIO     * Endpoint etc.).     */private final AbstractEndpoint endpoint;public void init() throws Exception {        if (getLog().isInfoEnabled()) {            getLog().info(sm.getString("abstractProtocolHandler.init", getName()));            logPortOffset();        }        if (oname == null) {            // Component not pre-registered so register it            oname = createObjectName();            if (oname != null) {                Registry.getRegistry(null, null).registerComponent(this, oname, null);            }        }        if (this.domain != null) {            rgOname = new ObjectName(domain + ":type=GlobalRequestProcessor,name=" + getName());            Registry.getRegistry(null, null).registerComponent(                    getHandler().getGlobal(), rgOname, null);        }        String endpointName = getName();        endpoint.setName(endpointName.substring(1, endpointName.length()-1));        endpoint.setDomain(domain);        endpoint.init();    }

这里出现了一个新的对象,endpoint,根据注释我们可以知道endpoint是用来处理网络IO的,而且必须匹配到指定的子类(比如Nio,就是NioEndPoint处理)。endpoint.init()实际上就是做一些网络的配置,然后就是初始化完毕了。根据我们上面的周期管理,我们知道init()后就是start(),所以我们查看Connectorstart()源码:

 protected void startInternal() throws LifecycleException {        // Validate settings before starting        if (getPortWithOffset() < 0) {            throw new LifecycleException(sm.getString(                    "coyoteConnector.invalidPort", Integer.valueOf(getPortWithOffset())));        }        setState(LifecycleState.STARTING);        try {            protocolHandler.start();        } catch (Exception e) {            throw new LifecycleException(                    sm.getString("coyoteConnector.protocolHandlerStartFailed"), e);        }    }

其实就是主要调用 protocolHandler.start()方法,继续跟踪,为了方便表述,我会把接下来的代码统一放在一起说明,代码如下:

//1.类:AbstractProtocol implements ProtocolHandler,        MBeanRegistration public void start() throws Exception {     // 省略部分代码    endpoint.start();    }//2. 类:AbstractEndPoint   public final void start() throws Exception {       // 省略部分代码        startInternal();    } /**3.类:NioEndPoint extends AbstractJsseEndpoint     * Start the NIO endpoint, creating acceptor, poller threads.     */    @Override    public void startInternal() throws Exception {        //省略部分代码                   // Start poller thread            poller = new Poller();            Thread pollerThread = new Thread(poller, getName() + "-ClientPoller");            pollerThread.setPriority(threadPriority);            pollerThread.setDaemon(true);            pollerThread.start();            startAcceptorThread();        }    }

到这里,其实整个启动代码就完成了,我们看到最后是在NioEndPoint创建了一个Poller,并且启动它,这里需要补充说明下,这里只是以NioEndPoint为示列,其实Tomcat 主要提供了三种实现,分别是AprEndPoint,NioEndPoint,Nio2EndPoint,这里表示了tomcat支持的I/O模型:

APR:采用 Apache 可移植运行库实现,它根据不同操作系统,分别用c重写了大部分IO和系统线程操作模块,据说性能要比其他模式要好(未实测)。

NIO:非阻塞 I/O

NIO.2:异步 I/O

上述代码主要是开启两个线程,一个是Poller,一个是开启Acceptor,既然是线程,核心的代码肯定是run方法,我们来查看源码,代码如下:

//4.类:Acceptor implements Runnable public void run() { //省略了部分代码                U socket = null;                    socket = endpoint.serverSocketAccept();                // Configure the socket                if (endpoint.isRunning() && !endpoint.isPaused()) {                    // setSocketOptions() will hand the socket off to                    // an appropriate processor if successful                    //核心逻辑                    if (!endpoint.setSocketOptions(socket)) {                        endpoint.closeSocket(socket);                    }                } else {                    endpoint.destroySocket(socket);                }                    state = AcceptorState.ENDED;}//5.类:NioEndpointprotected boolean setSocketOptions(SocketChannel socket) {        // Process the connection        //省略部分代码        try {            // Disable blocking, polling will be used            socket.configureBlocking(false);            Socket sock = socket.socket();            socketProperties.setProperties(sock);            NioSocketWrapper socketWrapper = new NioSocketWrapper(channel, this);            channel.setSocketWrapper(socketWrapper);            socketWrapper.setReadTimeout(getConnectionTimeout());            socketWrapper.setWriteTimeout(getConnectionTimeout());            socketWrapper.setKeepAliveLeft(NioEndpoint.this.getMaxKeepAliveRequests());            socketWrapper.setSecure(isSSLEnabled());            //核心逻辑            poller.register(channel, socketWrapper);            return true;      }

这里可以发现Acceptor主要就是接受socket,然后把它注册到poller中,我们继续看看是如何注册的。

/**6.类NioEndpoint         * Registers a newly created socket with the poller.         *         * @param socket    The newly created socket         * @param socketWrapper The socket wrapper         */        public void register(final NioChannel socket, final NioSocketWrapper socketWrapper) {            socketWrapper.interestOps(SelectionKey.OP_READ);//this is what OP_REGISTER turns into.            PollerEvent r = null;            if (eventCache != null) {                r = eventCache.pop();            }            if (r == null) {                r = new PollerEvent(socket, OP_REGISTER);            } else {                r.reset(socket, OP_REGISTER);            }            addEvent(r);        }/** 7.类:PollerEvent implements Runnable public void run() {    //省略部分代码    socket.getIOChannel().register(socket.getSocketWrapper().getPoller().getSelector(), SelectionKey.OP_READ, socket.getSocketWrapper());        }

这里发现最终就是采用NIO模型把其注册到通道中。(这里涉及NIO网络编程知识,不了解的同学可以传送这里)。那么注册完毕后,我们看看Poller做了什么事情。

*/          /**8.类:NioEndPoint内部类 Poller implements Runnable  **/    @Override        public void run() {            // Loop until destroy() is called            while (true) {                //省略部分代码                Iterator iterator =                    keyCount > 0 ? selector.selectedKeys().iterator() : null;                // Walk through the collection of ready keys and dispatch                // any active event.                while (iterator != null && iterator.hasNext()) {                    SelectionKey sk = iterator.next();                    NioSocketWrapper socketWrapper = (NioSocketWrapper) sk.attachment();                    // Attachment may be null if another thread has called                    // cancelledKey()                    if (socketWrapper == null) {                        iterator.remove();                    } else {                        iterator.remove();                        //sock处理                        processKey(sk, socketWrapper);                    }                }        //省略部分代码        }

这个就是通过selector把之前注册的事件取出来,从而完成了调用。

//9.类: NioEndPoint内部类 Poller  implements Runnable     protected void processKey(SelectionKey sk, NioSocketWrapper socketWrapper) {         //省略大部分代码           processSocket(socketWrapper, SocketEvent.OPEN_WRITE, true)    }       //10.类:AbstractEndPoint        public boolean processSocket(SocketWrapperBase socketWrapper,           SocketEvent event, boolean dispatch) {       //省略部分代码           Executor executor = getExecutor();           if (dispatch && executor != null) {               executor.execute(sc);           } else {               sc.run();           }             return true;   }  //11.类:SocketProcessorBase  implements Runnable   public final void run() {       synchronized (socketWrapper) {           // It is possible that processing may be triggered for read and           // write at the same time. The sync above makes sure that processing           // does not occur in parallel. The test below ensures that if the           // first event to be processed results in the socket being closed,           // the subsequent events are not processed.           if (socketWrapper.isClosed()) {               return;           }           doRun();       }   }   //类:12.NioEndPoint   extends AbstractJsseEndpoint protected void doRun() {       //省略部分代码               if (handshake == 0) {                   SocketState state = SocketState.OPEN;                   // Process the request from this socket                   if (event == null) {                       state = getHandler().process(socketWrapper, SocketEvent.OPEN_READ);                   } else {                       state = getHandler().process(socketWrapper, event);                   }                   if (state == SocketState.CLOSED) {                       poller.cancelledKey(key, socketWrapper);                   }               }       }

Poller调用的run方法或者用Executor线程池去执行run(),最终调用都是各个子EndPoint中的doRun()方法,最终会取一个Handler去处理socketWrapper。继续看源码:

//类:13.AbstractProtocol内部类ConnectionHandler implements AbstractEndpoint.Handler public SocketState process(SocketWrapperBase wrapper, SocketEvent status) {            //省略部分代码                state = processor.process(wrapper, status);                  return SocketState.CLOSED;        }        //类:14.AbstractProcessorLight implements Processor public SocketState process(SocketWrapperBase socketWrapper, SocketEvent status)            throws IOException {            //省略部分代码                       state = service(socketWrapper);                    return state;    }

这部分源码表明最终调用的process是通过一个Processor接口的实现类来完成的,这里最终也是会调用到各个子类中,那么这里的处理器其实就是处理应用协议,我们可以查看AbstractProcessorLight的实现类,分别有AjpProcessorHttp11ProcessorStreamProcessor,分别代表tomcat支持三种应用层协议,分别是:

  • AJP协议

  • HTTP.1协议

  • HTTP2.0协议

这里我们以常用的HTTP1.1为例,继续看源码:

//类:15. Http11Processor extends AbstractProcessorpublic SocketState service(SocketWrapperBase socketWrapper)        throws IOException {        //省略大部分代码             getAdapter().service(request, response);        //省略大部分代码           } //类:16   CoyoteAdapter implements Adapterpublic void service(org.apache.coyote.Request req, org.apache.coyote.Response res)            throws Exception {        Request request = (Request) req.getNote(ADAPTER_NOTES);        Response response = (Response) res.getNote(ADAPTER_NOTES);        postParseSuccess = postParseRequest(req, request, res, response);            if (postParseSuccess) {                //check valves if we support async                request.setAsyncSupported(                        connector.getService().getContainer().getPipeline().isAsyncSupported());                // Calling the container                connector.getService().getContainer().getPipeline().getFirst().invoke(                        request, response);            }                }

这里我们发现协议处理器最终会调用适配器(CoyoteAdapter),而适配器最终的工作是转换RequestResponse对象为HttpServletRequestHttpServletResponse,从而可以去调用容器,到这里整个连接器的流程和作用我们就已经分析完了。

小结

那么我们来回忆下整个流程,我画了一张时序图来说明:

这张图包含了两个流程,一个是组件的初始化,一个是调用的流程。连接器(Connector)主要初始化了两个组件,ProtcoHandlerEndPoint,但是我们从代码结构发现,他们两个是父子关系,也就是说ProtcoHandler包含了EndPoint。后面的流程就是各个子组件的调用链关系,总结来说就是Acceptor负责接收请求,然后注册到PollerPoller负责处理请求,然后调用processor处理器来处理,最后把请求转成符合Servlet规范的requestresponse去调用容器(Container)。

我们流程梳理清楚了,接下来我们来结构化的梳理下:

回到连接器(Connector)是源码,我们发现,上述说的模块只有ProtocolHandlerAdapter两个属于连接器中,也就是说,连接器只包含了这两大子模块,那么后续的EndPointAcceptorPollerProcessor都是ProtocolHandler的子模块。 而AcceptorPoller两个模块的核心功能都是在EndPoint 中完成的,所以是其子模块,而Processor比较独立,所以它和EndPoint是一个级别的子模块。

我们用图来说明下上述的关系:

根据上图我们可以知道,连接器主要负责处理连接请求,然后通过适配器调用容器。那么具体流程细化可以如下:

  • Acceptor监听网络请求,获取请求。

  • Poller获取到监听的请求提交线程池进行处理。

  • Processor根据具体的应用协议(HTTP/AJP)来生成Tomcat Request对象。

  • Adapter把Request对象转换成Servlet标准的Request对象,调用容器。

我们从连接器的源码,一步一步解析,分析了连接器主要包含了两大模块,ProtocolHandlerAdapterProtocolHandler主要包含了Endpoint模块和Processor模块。Endpoint模块主要的作用是连接的处理,它委托了Acceptor子模块进行连接的监听和注册,委托子模块Poller进行连接的处理;而Processor模块主要是应用协议的处理,最后提交给Adapter进行对象的转换,以便可以调用容器(Container)。

以上就是Tomcat中的连接器是如何设计的,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注行业资讯频道。

0