python中逻辑回归随机梯度下降法怎么用
发表于:2024-11-28 作者:千家信息网编辑
千家信息网最后更新 2024年11月28日,这篇文章主要为大家展示了"python中逻辑回归随机梯度下降法怎么用",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"python中逻辑回归随机梯度下降法怎么
千家信息网最后更新 2024年11月28日python中逻辑回归随机梯度下降法怎么用
这篇文章主要为大家展示了"python中逻辑回归随机梯度下降法怎么用",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"python中逻辑回归随机梯度下降法怎么用"这篇文章吧。
随机梯度下降法
随机梯度下降法(Stochastic Gradient Decent,
SGD)是对全批量梯度下降法计算效率的改进算法。本质上来说,我们预期随机梯度下降法得到的结果和全批量梯度下降法相接近;SGD的优势是更快地计算梯度。
代码
'''随机梯度下降法(Stochastic Gradient Decent, SGD)是对全批量梯度下降法计算效率的改进算法。本质上来说,我们预期随机梯度下降法得到的结果和全批量梯度下降法相接近;SGD的优势是更快地计算梯度。'''import pandas as pdimport numpy as npimport osos.getcwd()# F:\\pythonProject3\\data\\data\\train.csv# dataset_path = '..'# 这是一个全批量梯度下降(full-batch gradient descent)的应用。# 这个问题是一个回归问题# 我们给出美国某大型问答社区从2010年10月1日到2016年11月30日,# 每天新增的问题的个数和回答的个数。# 任务是预测2016年12月1日到2017年5月1日,该问答网站每天新增的问题数和回答数。train = pd.read_csv('..\\train.csv')# 导入数据# train = pd.read_csv('train.csv')test = pd.read_csv('..\\test.csv')submit = pd.read_csv('..\\sample_submit.csv')path2=os.path.abspath('.')print("path2@@@@@",path2)path3=os.path.abspath('..')print("path3@@@@@",path3)print(train)# 初始设置beta = [1,1] #初始点alpha = 0.2 #学习率,也就是步长tol_L = 0.1 #阈值,也就是精度# 对x进行归一化,train 是训练数据的二维表格max_x = max(train['id']) #max_x是总共的id数x = train['id'] / max_x #所有的id都除于max_xy = train['questions'] # train二维表格中的questions列赋给ytype(train['id'])print("train['id']#######\n",train['id'])print("type(train['id'])###\n\n",x)print("max_x#######",max_x)#为了计算方向def compute_grad_SGD(beta, x, y): ''' :param beta: 是初始点 :param x: 是自变量 :param y: 是真是值 :return: 梯度数组 ''' grad = [0, 0] r = np.random.randint(0, len(x)) #在0-len(x)之间随机生成一个数 grad[0] = 2. * np.mean(beta[0] + beta[1] * x[r] - y[r]) #求beta[1,1],中第1个数的梯度 grad[1] = 2. * np.mean(x * (beta[0] + beta[1] * x - y))#求beta[1,1],中第2个数的梯度 return np.array(grad)#为了计算下一个点在哪,def update_beta(beta, alpha, grad): ''' :param beta: 第一点,初始点 :param alpha: 学习率,也就时步长 :param grad: 梯度 :return: ''' new_beta = np.array(beta) - alpha * grad return new_beta# 定义计算RMSE的函数# 均方根误差(RMSE)def rmse(beta, x, y): squared_err = (beta[0] + beta[1] * x - y) ** 2 # beta[0] + beta[1] * x是预测值,y是真实值, res = np.sqrt(np.mean(squared_err)) return res# 进行第一次计算grad = compute_grad_SGD(beta, x, y) #调用计算梯度函数,计算梯度loss = rmse(beta, x, y) #调用损失函数,计算损失beta = update_beta(beta, alpha, grad) #更新下一点loss_new = rmse(beta, x, y) #调用损失函数,计算下一个损失# 开始迭代i = 1while np.abs(loss_new - loss) > tol_L: beta = update_beta(beta, alpha, grad) grad = compute_grad_SGD(beta, x, y) if i % 100 == 0: loss = loss_new loss_new = rmse(beta, x, y) print('Round %s Diff RMSE %s'%(i, abs(loss_new - loss))) i += 1print('Coef: %s \nIntercept %s'%(beta[1], beta[0]))res = rmse(beta, x, y)print('Our RMSE: %s'%res)from sklearn.linear_model import LinearRegressionlr = LinearRegression()lr.fit(train[['id']], train[['questions']])print('Sklearn Coef: %s'%lr.coef_[0][0])print('Sklearn Coef: %s'%lr.intercept_[0])res = rmse([936.051219649, 2.19487084], train['id'], y)print('Sklearn RMSE: %s'%res)
以上是"python中逻辑回归随机梯度下降法怎么用"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!
梯度
个数
函数
损失
问题
学习
逻辑
内容
篇文章
也就是
优势
效率
数据
日到
更快
本质
算法
结果
表格
二维
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
MELON下载软件开发
数据库管理系统技术
文普数据库及检索系统
路由 服务器无响应
数据库加字符可以防止下载吗
linux 服务器框架
学生考勤数据库管理系统设计
淮安软件开发公司
山东网络安全大赛时间
数据库战略研讨会 宁夏
山西程序软件开发的用途和特点
宇飞来互联网科技
网络安全主题班会黑板报简约
r星服务器不可用是怎么回事
mysql和服务器
学校服务器安全管理
网络技术网络前缀长度
计算机网络安全技术走向
海南企业软件开发要多少钱
信息网络技术是干什么的
怎么下载吃鸡服务器
华为登陆钱包无法联接服务器
云计算网络安全难度
todesk无法连接代理服务器
苏州戴尔服务器企业推荐
ping服务器ip延时高
通信网络技术对文化有要求吗
网络安全检测装置的白名单作用
普洱导航软件开发
无锡凌恒网络技术有限公司是公企