千家信息网

大数据IMF-L38-MapReduce内幕解密听课笔记及总结

发表于:2024-11-30 作者:千家信息网编辑
千家信息网最后更新 2024年11月30日,本期内容:1 MapReduce架构解密2 MapReduce运行集群研究3 通过Java编程操作MapReduce实战Hadoop从2。0开始就已经必须运行在 Yarn上面了,1.0时根本不关心Ya
千家信息网最后更新 2024年11月30日大数据IMF-L38-MapReduce内幕解密听课笔记及总结

本期内容:

1 MapReduce架构解密

2 MapReduce运行集群研究

3 通过Java编程操作MapReduce实战


Hadoop从2。0开始就已经必须运行在 Yarn上面了,1.0时根本不关心Yarn。

现在是 MR,也是讲Yarn的,而且已经是 基础入门阶段。零基础已经过去了。


明天开始 - 20个左右的MapReduce代码的集合讲解


一:基于Yarn的MapReduce架构

1.MR代码程序是基于实现Mapper和Reducer两大阶段构成的,其中Mapper是把一个计算任务分解成很多

小任务进行并行计算,Reducer是进行最后的统计的工作的;


2.Hadoop 2.x开始是基于Yarn运行的。


Yarn是管理集群的所有资源的(如内存和CPU),ResourceManager,每个节点上安排了一上JVM进程,NodeManager,接收要求用Container方式来包裹这些资源,当RM接收到作业请求时,


3.当ResourceManager接收到Client提交的请求的程序的时候会根据集群资源的状况在某个NodeManager所在的节点上命令NodeManager启动该程序的第一个Container,该Container就是程序的ApplicationMaster,负责程序的任务调度的执行过程,ApplicationManager转过来向ResourceManager注册自己,注册之后会向ReourceManager申请具体的Container计算资源。

4.如何街道一个程序中的ApplicationMaster需要多少个Container呢?

Application在启动时会运行程序的Main方法,该方法中会有数据的输入和相关的配置,通过这些内容就可以知道需要多少Container;


(container是一个单位的计算机资源,根据客户端请求的计算,集群会解析计算job,计算结果包含需要的contain资源)

Application要运行Main方法,知道分析程序有多少个分片,多少个分片对应Container,再考量其他资源,如Shuffle等再分配一些资源。


5.MapReduce运行在Yarn上的总结

主从结构

主节点,只有一个: ResourceManager

控制节点,每个Job都有一个MRAppMaster

从节点,有很多个: YarnChild

ResourceManager负责:

接收客户提交的计算任务

把Job分给MRAppMaster执行

监控MRAppMaster的执行情况

MRAppMaster负责:

负责一个Job执行的任务调度

把Job分给YarnChild执行

监控YarnChild的执行情况

YarnChild负责:

执行MRAppMaster分配的计算任务


RM生产环境中是要做HA的


6.Hadoop MapReduce中的 MRAppMaster,相当于Spark中的Driver,Hadoop MapReduce中的YarnChildren相当于Spark中的CoarseGrainedExecutorBackend;


(Hadoop相对于Spark资源的损耗相当多)

0