千家信息网

R语言中如何在数据可视化过程中调整因子顺序

发表于:2025-01-23 作者:千家信息网编辑
千家信息网最后更新 2025年01月23日,这篇文章将为大家详细讲解有关R语言中如何在数据可视化过程中调整因子顺序,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。实例操练这个例子使用的数据集为ti
千家信息网最后更新 2025年01月23日R语言中如何在数据可视化过程中调整因子顺序

这篇文章将为大家详细讲解有关R语言中如何在数据可视化过程中调整因子顺序,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

实例操练

这个例子使用的数据集为tidyverse包自带的数据集,大家可以使用?gss_cat查看相关变量,这儿不再赘述。

在数据可视化过程中改变因子顺序是一个经常性的操作,比如我们想看看不同religions的average number of hours spent watching TV per day有什么不同,我们可以用以下代码:

relig_summary <- gss_cat %>%   group_by(relig) %>%   summarise(     age = mean(age, na.rm = TRUE),     tvhours = mean(tvhours, na.rm = TRUE),     n = n()   )  ggplot(relig_summary, aes(tvhours, relig)) + geom_point()

运行代码得到输出的点图如下:

上面的这个点图其实很不好看,我们可能会觉得能不能把religions的顺序变一变,让有最小tvhours的religion在y轴的最下面,有最大tvhours的在最上面。

怎么做呢,需要用到fct_reorder()方法,这个方法取2个参数:

  • 第一个就是你想改变顺序的因子,本例中:religions

  • 第二个,改变顺序的参照物,本例中:tvhours

代码如下:

ggplot(relig_summary, aes(tvhours, fct_reorder(relig, tvhours))) +   geom_point()

可以看到,改变了religions的顺序后这个图就更加清晰明白了。

再看一个例子:

rincome_summary <- gss_cat %>%   group_by(rincome) %>%   summarise(     age = mean(age, na.rm = TRUE),     tvhours = mean(tvhours, na.rm = TRUE),     n = n()   )  ggplot(rincome_summary, aes(age, fct_reorder(rincome, age))) + geom_point()

上面的代码,可以画出按年龄排序后不同rincome和age的关系:

但是,问题出在按年龄排序后我们的收入(y轴)显得很乱,所以这个方法并不好,考虑到收入本来就是有顺序的,所以好的处理方法为保留收入的原始顺序,于是我们写出了如下代码:

rincome_summary <- gss_cat %>%   group_by(rincome) %>%   summarise(     age = mean(age, na.rm = TRUE),     tvhours = mean(tvhours, na.rm = TRUE),     n = n()   )  ggplot(rincome_summary, aes(age, rincome)) + geom_point()

这次再看我们的图,虽然其他的收入levels都排的挺好,但是我们不希望"Not applicable"排在第一。这个时候我们可以用fct_relevel(),它也有2个参数:

  • 需要排序的因子,本例中:rincome

  • 需要放在最前面的levels,本例中:Not applicable

代码如下:

ggplot(rincome_summary, aes(age, fct_relevel(rincome, "Not applicable"))) +   geom_point()

这一下,我们的图形就比较满意了。

再看一个例子:线图的颜色控制:

by_age <- gss_cat %>%   filter(!is.na(age)) %>%   count(age, marital) %>%   group_by(age) %>%   mutate(prop = n / sum(n))  ggplot(by_age, aes(age, prop, colour = marital)) +   geom_line(na.rm = TRUE)  ggplot(by_age, aes(age, prop, colour = fct_reorder2(marital, age, prop))) +   geom_line() +   labs(colour = "marital")

上面的代码画的是不同的年龄中婚姻状况的比例变化:

我们通过fct_reorder2实现了图例和x变量最大时y的值的顺序一致,可以更加明晰。

最后再看一个柱状图调整因子顺序的例子

下面的代码可以,正序逆序改变x轴标签:

  1. gss_cat %>%

  2. mutate(marital = marital %>% fct_infreq() ) %>%

  3. ggplot(aes(marital)) +

  4. geom_bar()

  5. gss_cat %>%

  6. mutate(marital = marital %>% fct_infreq() %>% fct_rev()) %>%

  7. ggplot(aes(marital)) +

  8. geom_bar()


大家可以在自己电脑上运行试试,关键就在于fct_rev()。

今天通过3个例子给大家介绍了可视化中因子顺序的改变,感谢大家耐心看完。发表这些东西的主要目的就是督促自己,希望大家关注评论指出不足,一起进步。

关于R语言中如何在数据可视化过程中调整因子顺序就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

0