千家信息网

C++ opencv如何利用grabCut算法实现抠图

发表于:2025-01-16 作者:千家信息网编辑
千家信息网最后更新 2025年01月16日,今天小编给大家分享一下C++ opencv如何利用grabCut算法实现抠图的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章
千家信息网最后更新 2025年01月16日C++ opencv如何利用grabCut算法实现抠图

今天小编给大家分享一下C++ opencv如何利用grabCut算法实现抠图的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

前言

grabCut算法利用了图像中的纹理(颜色)信息和边界(反差)信息,只用少量的用户交互操作,即可得到比较好的分割结果,和分水岭顺丰比较相似,但是计算速度比较慢,得到的结果比较精确

用法:输入一幅图片并对一些像素做属于背景或属于前景的标记,算法会根据这个局部标记计算出整个图像中前景和背景的分割线。

一、grabCut函数

void grabCut(InputArray img, InputOutputArray mask, Rect rect,                InputOutputArray bgdModel, InputOutputArray fgdModel,                int iterCount, int mode = GC_EVAL);        img 输入图像        mask 输出掩码        rect 用户选择的前景矩形区域        bgdModel 输出背景图像        fgdModel 输出前景图像        iterCount 迭代次数        mode 用于指示函数执行什么操作

二、compare函数

compare函数主要用于两个图像之间进行逐像素的比较

void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);        src1 原始图像1        src2原始图像2        dst 结果图像        cmpop 操作类型

三、代码

#include#includeusing namespace std;using namespace cv;int main(){        Mat img1;        img1 = imread("test2.jpg");        imshow("原图", img1);        Rect rect(84, 84, 406, 318);        Mat img2, bg, fg;        grabCut(img1, img2, rect, bg, fg,1,GC_INIT_WITH_RECT);        compare(img2, GC_PR_FGD, img2, CMP_EQ);        imshow("img2", img2);        Mat img3(img1.size(), CV_8UC3, Scalar(255, 255, 255));        img1.copyTo(img3, img2);        imshow("img3", img3);        waitKey(0);}

效果图:

以上就是"C++ opencv如何利用grabCut算法实现抠图"这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注行业资讯频道。

0