python机器学习sklearn怎么实现识别数字
发表于:2024-11-17 作者:千家信息网编辑
千家信息网最后更新 2024年11月17日,这篇文章主要介绍了python机器学习sklearn怎么实现识别数字的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python机器学习sklearn怎么实现识别数字文章都
千家信息网最后更新 2024年11月17日python机器学习sklearn怎么实现识别数字
这篇文章主要介绍了python机器学习sklearn怎么实现识别数字的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python机器学习sklearn怎么实现识别数字文章都会有所收获,下面我们一起来看看吧。
数据处理
数据分离
因为我们打开我们的的学习数据集,最后一项是我们的真实数值,看过小唐上一篇的人都知道,老规矩先进行拆分,前面的特征放一块,后面的真实值放一块,同时由于数据没有列名,我们选择使用iloc[]来实现分离
def shuju(tr_path,ts_path,sep='\t'): train=pd.read_csv(tr_path,sep=sep) test=pd.read_csv(ts_path,sep=sep) #特征和结果分离 train_features=train.iloc[:,:-1].values train_labels=train.iloc[:,-1].values test_features = test.iloc[:, :-1].values test_labels = test.iloc[:, -1].values return train_features,test_features,train_labels,test_labels
训练数据
我们在这里直接使用sklearn函数,通过选择模型,然后直接生成其识别规则
#训练数据def train_tree(*data): x_train, x_test, y_train, y_test=data clf=DecisionTreeClassifier() clf.fit(x_train,y_train) print("学习模型预测成绩:{:.4f}".format(clf.score(x_train, y_train))) print("实际模型预测成绩:{:.4f}".format(clf.score(x_test, y_test))) #返回学习模型 return clf
数据可视化
为了让我们的观察更加直观,我们还可以使用matplotlib来进行观测
def plot_imafe(test,test_labels,preds): plt.ion() plt.show() for i in range(50): label,pred=test_labels[i],preds[i] title='实际值:{},predict{}'.format(label,pred) img=test[i].reshape(28,28) plt.imshow(img,cmap="binary") plt.title(title) plt.show() print('done')
结果
完整代码
import pandas as pdfrom sklearn.tree import DecisionTreeClassifierimport matplotlib.pyplot as pltdef shuju(tr_path,ts_path,sep='\t'): train=pd.read_csv(tr_path,sep=sep) test=pd.read_csv(ts_path,sep=sep) #特征和结果分离 train_features=train.iloc[:,:-1].values train_labels=train.iloc[:,-1].values test_features = test.iloc[:, :-1].values test_labels = test.iloc[:, -1].values return train_features,test_features,train_labels,test_labels#训练数据def train_tree(*data): x_train, x_test, y_train, y_test=data clf=DecisionTreeClassifier() clf.fit(x_train,y_train) print("学习模型预测成绩:{:.4f}".format(clf.score(x_train, y_train))) print("实际模型预测成绩:{:.4f}".format(clf.score(x_test, y_test))) #返回学习模型 return clfdef plot_imafe(test,test_labels,preds): plt.ion() plt.show() for i in range(50): label,pred=test_labels[i],preds[i] title='实际值:{},predict{}'.format(label,pred) img=test[i].reshape(28,28) plt.imshow(img,cmap="binary") plt.title(title) plt.show() print('done')train_features,test_features,train_labels,test_labels=shuju(r"C:\Users\twy\PycharmProjects\1\train_images.csv",r"C:\Users\twy\PycharmProjects\1\test_images.csv")clf=train_tree(train_features,test_features,train_labels,test_labels)preds=clf.predict(test_features)plot_imafe(test_features,test_labels,preds)
关于"python机器学习sklearn怎么实现识别数字"这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对"python机器学习sklearn怎么实现识别数字"知识都有一定的了解,大家如果还想学习更多知识,欢迎关注行业资讯频道。
学习
数据
模型
数字
机器
实际
成绩
特征
知识
结果
训练
内容
篇文章
选择
直观
代码
价值
函数
同时
操作简单
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
不能设置数据库安全
微信记录服务器保留吗
sql是数据库组成元素吗
网络技术对企业营销的影响
utf8文本加载到gbk数据库
电信网络技术犯罪
计算机软件开发专业女生多吗
服务器管理员名称和密码忘了
惠州服务软件开发热线
电厂网络安全技术
怎么维护数据库的稳定和安全
智慧园林应用软件开发价格
新余服务器
白银网络安全工程师认证
鹰潭精益管理软件开发
运营者应当制定网络安全预案
网页设置代理服务器
网络安全防护目标怎么做
保德服务器如何做raid
入围公安部的网络安全品牌
网络安全等保什么企业可做
业务效率网络安全
网络安全品牌前十大排名
黄埔网络安全建设哪家好
电力网络安全教程
爱丝昆软件开发
软件技术专业是软件开发那
网络安全基础课后
苹果手机微信服务器无法登陆
高职网络技术有前景吗