R语言中编辑器的相关性分析是怎样的
发表于:2025-02-06 作者:千家信息网编辑
千家信息网最后更新 2025年02月06日,本篇文章为大家展示了R语言中编辑器的相关性分析是怎样的,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。R语言中cor函数,只能计算相关系数,如果想要计算显著性,
千家信息网最后更新 2025年02月06日R语言中编辑器的相关性分析是怎样的
本篇文章为大家展示了R语言中编辑器的相关性分析是怎样的,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
R语言中cor函数,只能计算相关系数,如果想要计算显著性,需要两两用cor.test
进行,如果是多列数据,操作比较麻烦。这里介绍两个包,非常方便的进行多列数据的相关系数及其显著性的检验,并且给出可视化。
1. 模拟数据
这里模拟出10列数据,转化为数据库,是100行10列的数据,目的是为了计算这10列的相关系数及其显著性,虽然随机数没有显著性可言,但是作为一个演示,还是很可以说明问题的。
> set.seed(123)
> dd = as.data.frame(matrix(rnorm(1000),100,10))
> head(dd)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 -0.56047565 -0.71040656 2.1988103 -0.7152422 -0.07355602 -0.60189285 1.07401226 -0.7282191 0.3562833 -1.0141142
2 -0.23017749 0.25688371 1.3124130 -0.7526890 -1.16865142 -0.99369859 -0.02734697 -1.5404424 -0.6580102 -0.7913139
3 1.55870831 -0.24669188 -0.2651451 -0.9385387 -0.63474826 1.02678506 -0.03333034 -0.6930946 0.8552022 0.2995937
4 0.07050839 -0.34754260 0.5431941 -1.0525133 -0.02884155 0.75106130 -1.51606762 0.1188494 1.1529362 1.6390519
5 0.12928774 -0.95161857 -0.4143399 -0.4371595 0.67069597 -1.50916654 0.79038534 -1.3647095 0.2762746 1.0846170
6 1.71506499 -0.04502772 -0.4762469 0.3311792 -1.65054654 -0.09514745 -0.21073418 0.5899827 0.1441047 -0.6245675
2. 计算相关系数及显著性
首先要载入Hmisc
这个包,因为我们要用这个包里面的rcorr
函数,如果没有这个包,那就运行命令install.packages("Hmisc")
安装即可。
❝题外话,这种蓝色的代码高亮,真是太好看了,我进而想到王者荣耀的皮肤那么多人购买真的是有很多人在乎颜值的,进而推测出我钻石五星段位的持久性与我没有氪金有很强的关联性,因为充钱的快乐只能N连胜的喜悦才可以体会。顺便说一句,当你N连跪之后就把游戏卸了洗洗睡吧,我今天都把腾讯的企业微信给投诉了,是截图投诉的,然后领导告诉我"知道为什么腾讯把你公众号封一个月吧?打游戏不氪金还瞎比比。。。"
❞
> # 计算相关系数及显著性
> library(Hmisc)#加载包
> res2 <- rcorr(as.matrix(dd))
> res2
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 1.00 -0.05 -0.13 -0.04 -0.19 -0.06 -0.03 0.18 -0.02 0.01
V2 -0.05 1.00 0.03 0.04 -0.13 0.11 0.08 -0.03 -0.05 -0.09
V3 -0.13 0.03 1.00 -0.04 -0.02 0.02 0.01 -0.12 -0.05 -0.01
V4 -0.04 0.04 -0.04 1.00 -0.02 -0.09 -0.06 0.17 -0.17 0.25
V5 -0.19 -0.13 -0.02 -0.02 1.00 0.21 -0.01 -0.14 -0.04 -0.02
V6 -0.06 0.11 0.02 -0.09 0.21 1.00 -0.06 0.09 0.07 -0.03
V7 -0.03 0.08 0.01 -0.06 -0.01 -0.06 1.00 0.00 -0.13 -0.02
V8 0.18 -0.03 -0.12 0.17 -0.14 0.09 0.00 1.00 0.00 0.02
V9 -0.02 -0.05 -0.05 -0.17 -0.04 0.07 -0.13 0.00 1.00 -0.02
V10 0.01 -0.09 -0.01 0.25 -0.02 -0.03 -0.02 0.02 -0.02 1.00
n= 100
P
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 0.6246 0.2002 0.6632 0.0547 0.5767 0.7343 0.0706 0.8234 0.9135
V2 0.6246 0.7626 0.6650 0.1952 0.2567 0.4398 0.7435 0.6543 0.3653
V3 0.2002 0.7626 0.6576 0.8061 0.8573 0.9317 0.2544 0.5985 0.8866
V4 0.6632 0.6650 0.6576 0.8492 0.3737 0.5284 0.0950 0.1008 0.0139
V5 0.0547 0.1952 0.8061 0.8492 0.0392 0.9488 0.1628 0.6958 0.8741
V6 0.5767 0.2567 0.8573 0.3737 0.0392 0.5225 0.3515 0.4622 0.8046
V7 0.7343 0.4398 0.9317 0.5284 0.9488 0.5225 0.9979 0.2012 0.8398
V8 0.0706 0.7435 0.2544 0.0950 0.1628 0.3515 0.9979 0.9936 0.8107
V9 0.8234 0.6543 0.5985 0.1008 0.6958 0.4622 0.2012 0.9936 0.8225
V10 0.9135 0.3653 0.8866 0.0139 0.8741 0.8046 0.8398 0.8107 0.8225
3. 显著性的可视化
上面有相关系数,有对应的显著性,但是R语言做完统计如果没有可视化,就像吃完饭没有喝汤,总感觉少了什么,那就可视化吧!
> library(PerformanceAnalytics)#加载包
> chart.Correlation(dd, histogram=TRUE, pch=19)
4. 完整代码
set.seed(123)
dd = as.data.frame(matrix(rnorm(1000),100,10))
head(dd)
# 计算相关系数及显著性
library(Hmisc)#加载包
res2 <- rcorr(as.matrix(dd))
res2
# 可视化
library(PerformanceAnalytics)#加载包
chart.Correlation(dd, histogram=TRUE, pch=19)
上述内容就是R语言中编辑器的相关性分析是怎样的,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注行业资讯频道。
显著
系数
数据
可视化
语言
相关性
编辑器
分析
代码
内容
函数
技能
知识
腾讯
投诉
好看
简明
喜悦
简明扼要
两个
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
软件开发包括哪些阶段
怎样把复制的内容粘贴到数据库
成绩查询系统 数据库
网络安全主攻手
网络安全你需要知道
数据库在使用中可以还原
粮食监管数据库建立
网络安全管理员证书能干嘛
湖北经济学院网络安全领导小组
科技互联网erf
黑魂2服务器怎么用
法制保障网络安全
数据库给出日期显示指定年龄
东城区网络安全等级保护
广州手机应用软件开发公司哪家好
朱家角民宿软件开发
学院开启网络安全宣传周
邮政快递系统服务器错误怎么办
以管理员运行服务器
西子奥的斯服务器价格
c语言复制远程服务器文件
广东佛山网络安全小游戏
服务器不好用
修改曙光服务器管理口密码
bentham 数据库
彭博数据库泄露
saki 元件标准数据库
网络技术最适合多媒体
俄罗斯网络安全
数据库添加图书记录表