千家信息网

Java并发编程之LinkedBlockingQueue队列怎么使用

发表于:2025-01-22 作者:千家信息网编辑
千家信息网最后更新 2025年01月22日,这篇文章主要介绍了Java并发编程之LinkedBlockingQueue队列怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Java并发编程之LinkedBloc
千家信息网最后更新 2025年01月22日Java并发编程之LinkedBlockingQueue队列怎么使用

这篇文章主要介绍了Java并发编程之LinkedBlockingQueue队列怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Java并发编程之LinkedBlockingQueue队列怎么使用文章都会有所收获,下面我们一起来看看吧。

LinkedBlockingQueue也是使用单向链表实现的,其也有两个Node,分别用来存放首、尾节点,并且还有一个初始值为0的原子变量count,用来记录队列元素个数。另外还有两个ReentrantLock的实例,分别用来控制元素入队和出队的原子性,其中takeLock用来控制同时只有一个线程可以从队列头获取元素,其他线程必须等待,putLock控制同时只能有一个线程可以获取锁,在队列尾部添加元素,其他线程必须等待。另外,notEmpty 和 notFull 是条件变量,它们内部都有一个条件队列用来存放进队和出队时被阻塞的线程,其实这是生产者-消费者模型。如下是独占锁的创建代码。

private final AtomicInteger count = new AtomicInteger();/** Lock held by take, poll, etc */private final ReentrantLock takeLock = new ReentrantLock();/** Wait queue for waiting takes */private final Condition notEmpty = takeLock.newCondition();/** Lock held by put, offer, etc */private final ReentrantLock putLock = new ReentrantLock();/** Wait queue for waiting puts */private final Condition notFull = putLock.newCondition();
  • 当调用线程在LinkedBlockingQueue 实例上执行take、poll 等操作时需要获取到 takeLock 锁,从而保证同时只有一个线程可以操作链表头节点。另外由于条件变量 notEmpty 内部的条件队列的维护使用的是takeLock的锁状态管理机制,所以在调用notEmpty的await 和signal方法前调用线程必须先获取到 takeLock锁,否则会抛出IllegalMonitorStateException 异常。notEmpty内部则维护着一个条件队列,当线程获取到takeLock 锁后调用 notEmpty的await 方法时,调用线程会被阻塞,然后该线程会被放到notEmpty内部的条件队列进行等待,直到有线程调用了notEmpty的 signal 方法。

  • 在LinkedBlockingQueue实例上执行put、offer等操作时需要获取到putLock锁,从而保证同时只有一个线程可以操作链表尾节点。同样由于条件变量 notFull 内部的条件队列的维护使用的是putLock的锁状态管理机制,所以在调用 notFull 的 await 和 signal 方法前调用线程必须先获取到putLock锁,否则会抛出 IllegalMonitorStateException 异常。notFull 内部则维护着一个条件队列,当线程获取到 putLock 锁后调用notFull的await 方法时,调用线程会被阻塞,然后该线程会被放到notFull 内部的条件队列进行等待,直到有线程调用了 notFull 的 signal 方法。如下是LinkedBlockingQueue 的无参构造函数的代码。

如下是LinkedBlockingQueue的无参构造代码

public static final int MAX_VALUE = 0x7fffffff;public LinkedBlockingQueue() {    this(Integer.MAX_VALUE);}public LinkedBlockingQueue(int capacity) {    if (capacity <= 0) throw new IllegalAgrumentException();    this.capacity = capacity;    last = head = new Node(null);}

由该代码可知,默认队列容量为0x7fffffff,用户也可以自己指定容量,所以从一定程度上可以说LinkedBlockingQueue是有界阻塞队列。

offer操作

public boolean offer(E e) {//(1)    if (e == null) throw new NullPointerException();    //(2)    final AtomicInteger count = this.count;    if (count.get() == capacity)        return false;        //(3)    int c = -1;    Node node = new Node(e);    final ReentrantLock putLock = this.putLock;    putLock.lock();    try {    //(4)        if (count.get() < capacity) {            enqueue(node);            c = count.getAndIncrement();            //(5)            if (c + 1 < capacity)                notFull.signal();        }    } finally {    //(6)        putLock.unlock();    }    //(7)    if (c == 0)        signalNotEmpty();        //(8)    return c >= 0;}

代码(2)判断如果当前队列已满则丢弃当前元素并返回false

代码(3)获取到 putLock 锁,当前线程获取到该锁后,则其他调用put和 offer操的线程将会被阻塞(阻塞的线程被放到putLock锁的AQS阻塞队列)。

代码(4)这里重新判断当前队列是否满,这是因为在执行代码(2)和获取到 putLock 锁期间可能其他线程通过 put 或者offer 操作向队列里面添加了新元素。重新判斯队列确实不满则新元素入队,并递增计数器。

代码(5)判断如果新元素入队后队列还有空闲空间,则唤醒notFull的条件队列里面因为调用了notFull的await操作(比如执行put方法而队列满了的时候)而被阻塞的一个线程,因为队列现在有空闲所以这里可以提前唤醒一个入队线程。

代码(6)则释放获取的putLock 锁,这里要注意,锁的释放一定要在finally里面做因为即使try块抛出异常了,finally也是会被执行到。另外释放锁后其他因为调用put 操作而被阻塞的线程将会有一个获取到该锁。

代码(7)中的c0说明在执行代码(6)释放锁时队列里面至少有一个元素,队列里面有元素则执行signalNotEmpty操作.

关于"Java并发编程之LinkedBlockingQueue队列怎么使用"这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对"Java并发编程之LinkedBlockingQueue队列怎么使用"知识都有一定的了解,大家如果还想学习更多知识,欢迎关注行业资讯频道。

0