OneFlow是如何和ONNX交互的
本篇内容主要讲解"OneFlow是如何和ONNX交互的",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"OneFlow是如何和ONNX交互的"吧!
0x0. 介绍
在开始阅读本篇文章之前,如果你对ONNX不是很了解介意先阅读我之前写的这几篇介绍ONNX文章:
ONNX初探
ONNX 再探
onnx2pytorch和onnx-simplifier新版介绍
以及大老师的:
onnx simplifier 和 optimizer
然后,这篇文章不会继续探索ONNX本身的东西,而是聊聊另外一个有趣的话题,即深度学习框架是如何和ONNX进行交互的?我最近配合大老师基于OneFlow深度学习框架做了一些和ONNX有关的工作,感觉自己对OneFlow和ONNX的交互过程也算熟悉一些了。因此,在这篇文章我将分享OneFlow和ONNX交互的具体实现思路以及介绍oneflow-onnx这个开源工具的一些特性。让读者了解OneFlow的模型是如何转换为ONNX模型,以及ONNX模型是如何转回OneFlow的模型(X2OneFlow)的。个人认为OneFlow目前和ONNX交互的做法是比较优雅并且具有较好扩展性的,因此我们将这项工作转换成了开源成果并分享实现思路,github地址为:https://github.com/Oneflow-Inc/oneflow_convert_tools
。这个工具作为OneFlow 生态系统的一部分会被我们持续维护,同时这个工具也被我们制作成了一个wheel包,感兴趣的用户只需要pip安装oneflow-onnx即可快速体验。在下面的第二节以及工程的README也有详细的安装步骤。
oneflow-onnx工具包含两个功能,一个是将OneFlow导出ONNX,另外一个是将各个训练框架导出的ONNX模型转换为OneFlow的模型。本工程已经适配了TensorFlow/Pytorch/PaddlePaddle框架的预训练模型通过导出ONNX转换为OneFlow(我们将这一功能叫作X2OneFlow)。更多使用示例以及相关文档和源码均可以在开源https://github.com/Oneflow-Inc/oneflow_convert_tools
工程中获得。
0x1. 算子支持和模型支持
OneFlow2ONNX
OneFlow2ONNX 支持的OP列表
目前OneFlow2ONNX 支持60+的ONNX OP,我们在下面的列表中列出了目前OneFlow支持导出的全部ONNX OP
序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
---|---|---|---|---|---|---|---|
1 | GatherND | 2 | Transpose | 3 | Add | 4 | Sub |
5 | Mul | 6 | Div | 7 | Sum | 8 | LeakyRelu |
9 | Softplus | 10 | Softplus | 11 | Abs | 12 | Ceil |
13 | Elu | 14 | Exp | 15 | Floor | 16 | Log |
17 | Neg | 18 | Sigmoid | 19 | Sqrt | 20 | Tanh |
21 | Reciprocal | 22 | Relu | 23 | Acos | 24 | Asin |
25 | Atan | 26 | Cos | 27 | Sin | 28 | Tan |
29 | Acosh | 30 | Asinh | 31 | Atanh | 32 | Cosh |
33 | Sinh | 34 | Min | 35 | Max | 36 | Clip |
37 | Softmax | 38 | Sign | 39 | MatMul | 40 | Erf |
41 | FloorMod | 42 | Round | 43 | Not | 44 | And |
45 | Or | 46 | Equal | 47 | NotEqual | 48 | Greater |
49 | Less | 50 | Pad | 51 | AveragePool | 52 | MaxPool |
53 | Conv | 54 | QuantizeLinear | 56 | ReduceMin | 57 | BatchNormalization |
58 | ReduceSum | 59 | ReduceProd | 60 | ArgMax | 61 | ArgMin |
62 | Reshape | 63 | Squeeze | 64 | Transpose | 65 | Concat |
66 | Cast | 67 | Identity | 68 | Mul |
OneFlow2ONNX 模型测试库
目前OneFlow2ONNX 支持60+的ONNX OP,我们在下面的模型列表中测试了OneFlow2ONNX的转换。
模型 | 来源 | operator version |
---|---|---|
AlexNet | OneFlow-AlexNet | 10 |
MobileNetV2 | Oneflow-MobileNetV2 | 10 |
ResNet50 | OneFlow-ResNet50 | 10 |
X2OneFlow
X2OneFlow 支持的OP列表
目前X2OneFlow 支持40+的ONNX OP,30+的Tensorflow/Pytorch/PaddlePaddle OP,覆盖了大部分CV分类模型常用的操作。OP的单元测试代码会逐渐移步到工程的examples目录下,并支持更多的OP。
ONNX
序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
---|---|---|---|---|---|---|---|
1 | Conv | 2 | BatchNormalization | 3 | MaxPool | 4 | AveragePool |
5 | Concat | 6 | ReLU | 7 | AdaptiveMaxPool | 8 | Softmax |
9 | Unsqueeze | 10 | Transpose | 11 | Clip | 12 | Gather |
13 | Slice | 14 | Split | 15 | Flatten | 16 | Add |
17 | Sub | 18 | Mul | 19 | Div | 20 | Sqrt |
21 | Pow | 22 | Tanh | 23 | Sigmoid | 24 | Cast |
25 | Pad | 26 | ReduceMean | 27 | Reshape | 28 | AdaptiveAvgPool |
29 | Squeeze | 30 | Expand | 31 | Gather | 32 | Slice |
33 | Split | 34 | Min | 35 | Max | 36 | Constant |
37 | HardSigmoid | 38 | Gemm | 39 | MatMul | 40 | Erf |
41 | Cast | 42 | GlobalMaxPool | 43 | GlobalAveragePool | 44 | ReduceMax |
45 | Identity |
TensorFlow
序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
---|---|---|---|---|---|---|---|
1 | relu | 2 | concatenate | 3 | expand_dims | 4 | transpose |
5 | batchnorm | 6 | slice | 7 | gather | 8 | clip_by_value |
9 | conv2d | 10 | depthwiseconv2d | 11 | flatten | 12 | add |
13 | sub | 14 | mul | 15 | div | 16 | pow |
17 | sqrt | 18 | tanh | 19 | sigmoid | 20 | erf |
21 | cast | 22 | pad | 23 | maxpool | 24 | avgpool |
25 | globalavgpool | 26 | globalmaxpool | 27 | reduce_mean | 28 | reshape |
29 | softmax | 30 | relu6 |
分组卷积存在问题,已给TensorFlow2ONNX团队PR。
Pytorch
序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
---|---|---|---|---|---|---|---|
1 | relu | 2 | cat | 3 | unsqueeze | 4 | transpose |
5 | batchnorm | 6 | slice | 7 | gather | 8 | clamp |
9 | conv2d | 10 | depthwiseconv2d | 11 | flatten | 12 | add |
13 | sub | 14 | mul | 15 | div | 16 | pow |
17 | sqrt | 18 | tanh | 19 | sigmoid | 20 | erf |
21 | cast | 22 | pad | 23 | maxpool | 24 | avgpool |
25 | globalavgpool | 26 | globalmaxpool | 27 | reduce_mean | 28 | reshape |
29 | softmax | 30 | relu6 | 31 | CrossEntropyLoss |
PaddlePaddle
序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
---|---|---|---|---|---|---|---|
1 | relu | 2 | concatenate | 3 | expand_dims | 4 | transpose |
5 | batchnorm | 6 | slice | 7 | gather | 8 | clip_by_value |
9 | conv2d | 10 | depthwiseconv2d | 11 | flatten | 12 | add |
13 | sub | 14 | mul | 15 | div | 16 | pow |
17 | sqrt | 18 | tanh | 19 | sigmoid | 20 | erf |
21 | cast | 22 | pad | 23 | maxpool | 24 | avgpool |
25 | adaptiveavgpool | 26 | adptivemaxpool | 27 | reduce_mean | 28 | reshape |
29 | softmax | 30 | relu6 |
相关issue:
https://github.com/PaddlePaddle/Paddle2ONNX/issues/221
https://github.com/PaddlePaddle/Paddle2ONNX/issues/220
X2OneFlow模型测试库
目前X2OneFlow 支持40+的ONNX OP,30+的Tensorflow/Pytorch/PaddlePaddle OP,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2OneFlow的转换。
Pytorch
模型 | 是否支持 |
---|---|
AlexNet | Yes |
VGGNet | Yes |
GoogleNet | Yes |
ResNet | Yes |
ResNext | Yes |
SENet | Yes |
MobileNetV1 | Yes |
MobileNetV2 | Yes |
MobileNetV3 | Yes |
RegNet | Yes |
DenseNet | Yes |
EfficientNet | Yes |
InceptionNet | Yes |
ShuffleNetV1 | Yes |
ShuffleNetV2 | Yes |
SqueezeNet | Yes |
TensorFlow
模型 | 是否支持 |
---|---|
VGGNet | Yes |
ResNet | Yes |
ResNetV2 | Yes |
XceptionNet | Yes |
MobileNetV1 | Yes |
MobileNetV2 | Yes |
MobileNetV3 | Yes |
DenseNet | Yes |
EfficientNet | Yes |
InceptionNet | Yes |
PaddlePaddle
模型 | 是否支持 |
---|---|
AlexNet | Yes |
VGGNet | Yes |
GoogleNet | Yes |
ResNet | Yes |
ResNext | Yes |
SE_ResNext | Yes |
SENet | Yes |
MobileNetV1 | Yes |
MobileNetV2 | Yes |
MobileNetV3 | Yes |
RegNet | Yes |
DenseNet | No(msg: "op_name: Concat_58 already exist in job: job_eval") |
EfficientNet | Yes |
InceptionNet | Yes |
ShuffleNetV2 | Yes |
SqueezeNet | Yes |
DPNNet | Yes |
DarkNet | Yes |
GhostNet | Yes |
RepVGG | Yes |
XceptionNet | Yes |
Xception_DeepLab | Yes |
Vision_Transformer | No("op_name: Constant_20 already exist in job: job_eval") |
Res2Net | No(split op bug,working) |
Unet | No(OneFlow的上采样OP和Paddle未对齐) |
模型的测试代码均可以在工程的examples中找到。
0x2. 快速体验
用户环境配置
python>=3.5onnx>=1.8.0onnx-simplifier>=0.3.3onnxoptimizer>=0.2.5onnxruntime>=1.6.0oneflow>=0.3.4
如果你想使用X2OneFlow(X代表TensorFlow/Pytorch/PaddlePaddle)需要安装对应的深度学习框架,需要安装对应的深度学习框架,依赖如下:
pytorch>=1.7.0paddlepaddle>=2.0.0tensorflow>=2.0.0
安装
安装方式1
pip install oneflow_onnx
安装方式2
git clone https://github.com/Oneflow-Inc/oneflow_convert_toolscd oneflow_onnxpython3 setup.py install
使用方法见工程的samples下的示例。
0x3. OneFlow-ONNX思路分享
我们将在这一节分享一下OneFlow的模型是如何被转换为ONNX的,这里我们以将OneFlow定义的AlexNet导出ONNX模型为例来分析源码。首先我们https://github.com/Oneflow-Inc/oneflow_convert_tools/blob/main/examples/oneflow2onnx/test_alexnet.py#L133
进到这里,可以看到下面调用代码:
def test_alexnet(): @flow.global_function() def alexnet_eval_job(x: tp.Numpy.Placeholder((1, 227, 227, 3))): return alexnet(x, None, False) convert_to_onnx_and_check(alexnet_eval_job, flow_weight_dir=None, onnx_model_path="/tmp")
这里通过flow.global_function()
定义了一个预测用于eval的AlexNet job
,网络的完整定义可以通过上面的链接访问,可以看到这里通过convert_to_onnx_and_check
函数将OneFlow定义的AlexNet转换为了ONNX模型,我们跟进这个函数,就来到了这里:https://github.com/Oneflow-Inc/oneflow_convert_tools/blob/main/oneflow_onnx/oneflow2onnx/util.py#L65-L73
,代码为:
while not os.path.exists(os.path.join(flow_weight_dir, "snapshot_done")): pass onnx_model_dir = onnx_model_path onnx_model_path = os.path.join(onnx_model_dir, "model.onnx") flow.onnx.export( job_func, flow_weight_dir, onnx_model_path, opset=opset, external_data=external_data, )
可以看到完成ONNX模型转换的核心函数就是这个flow.onnx.export
函数,我们继续跳转到这个函数https://github.com/Oneflow-Inc/oneflow_convert_tools/blob/main/oneflow_onnx/oneflow2onnx/flow2onnx.py#L229-L281
,代码如下:
def Export( job_func: Callable, model_save_dir: Text, onnx_filename: Text, continue_on_error: bool = False, opset: Optional[int] = None, extra_opset: Optional[int] = None, shape_override: Optional[Dict[Text, List[int]]] = None, external_data: bool = False,): r"""Export a oneflow model into ONNX format. Args: job_func: OneFlow的作业函数 model_save_dir: 包含OneFlow定义的模型权重的文件夹. 这个模型权重是用oneflow的check_point.save接口保存的。 onnx_filename: 输出ONNX模型文件名,字符串类型 continue_on_error: 如果某个OP无法处理(即没有映射),是否继续 opset: ONNX Opset版本号,默认为10 extra_opset: 额外Opset的列表,例如自定义操作使用的Opset shape_override: 带有输入信息的字典,覆盖OneFlow给定的输入形状 external_data: 将权重另存为ONNX外部数据,通常是为了绕过protobuf的2GB文件大小限制。 """ assert os.getenv("ENABLE_USER_OP") != "False" # 确定模型的路径是存在的 assert os.path.isdir(model_save_dir) # 通过c_api_util.GetJobSet()方法获取当前的所有job job_set = c_api_util.GetJobSet() # 我们要转的模型被定义在job_func中,所以我们先记录下它的名字 job_name = job_func.__name__ # 编译job_set,找到定义模型的job for job in job_set.job: # TODO(OYY) Modify the interface before modifying it if job.job_conf.job_name == job_name: # job找到了,可以开始进行下面的步骤,我们在外面详细解释 onnx_graph = ProcessFlowGraph( job, model_save_dir, continue_on_error=continue_on_error, opset=opset, extra_opset=extra_opset, shape_override=shape_override, ) onnx_graph = optimizer.OptimizeGraph(onnx_graph) model_proto = onnx_graph.MakeModel( job_name, onnx_filename, external_data=external_data ) with open(onnx_filename, "wb") as f: try: f.write(model_proto.SerializeToString()) except ValueError as e: raise ValueError( "Error occured when running model_proto.SerializeToString(). If the model is larger than 2GB, please specify external_data=True when calling flow.onnx.export. Original error message:\n{}".format( e ) ) return raise ValueError('Cannot find job "{}" in jobset'.format(job_name))
可以看到这个函数首先编译了OneFlow中的job_set,然后找到了我们最开始定义AlexNet模型的那个job,然后就进入了ProcessFlowGraph
函数,这个函数主要做了三件事情并最终获得了初版的合法ONNX模型(初版的意思是还没有经过优化以及填ONNX节点的权重),我们跟进这个函数,代码如下。
def ProcessFlowGraph( flow_graph, model_save_dir, continue_on_error=False, opset=None, extra_opset=None, shape_override=None,): # 这个函数用来获取导出的ONNX的Opset Version,OneFlow里面最高为10 opset = util.FindOpset(opset) logger.info("Using opset", opset) # 判断当前的ONNX版本是否支持上面的Opset Version if opset > schemas.get_max_supported_opset_version(): logger.warning( "Currently installed onnx package %s is too low to support opset %s, " "please upgrade onnx package to avoid potential conversion issue.", util.get_onnx_version(), opset, ) if shape_override is None: shape_override = {} # 用于将oneflow 的各个 node 转换为 onnx node 的格式,保持 op 类型、输入输出和属性值不变,这一步产生的还不是合法的 onnx 模型 (onnx_nodes, op_cnt, attr_cnt, dtypes, output_shapes,) = FlowToOnnxNaive( flow_graph, shape_override ) # 构造一个 Graph 类,用于后续方便的修改 onnx 网络结构 g = Graph(onnx_nodes, model_save_dir, output_shapes, dtypes, opset, extra_opset,) # create ops mapping for the desired opsets ops_mapping = handler.flow_op.CreateMapping(g.opset, g.extra_opset) # some nodes may already copied into inner Graph, so remove them from main Graph. TopologicalSort(g, continue_on_error) # FlowOnnxMapping 函数调用各个转换函数(通过 @flow_op 注册)逐个转换 op,转换后产生的是合法的 onnx 模型 mapped_op, unmapped_op, exceptions = FlowOnnxMapping(g, ops_mapping) if unmapped_op: logger.error("Unsupported ops: %s", unmapped_op) if exceptions and not continue_on_error: raise exceptions[0] # onnx requires topological sorting TopologicalSort(g, continue_on_error) g.UpdateProto() logger.debug( "Summay Stats:\n" "\toneflow ops: {}\n" "\toneflow attr: {}\n" "\tonnx mapped: {}\n" "\tonnx unmapped: {}".format(op_cnt, attr_cnt, mapped_op, unmapped_op) ) return g
FlowToOnnxNaive
这个函数用于将oneflow 的各个 node 转换为 onnx node 的格式,保持 op 类型、输入输出和属性值不变,最后将转换后的ONNX节点(这个地方这些ONNX节点还不是真正的合法ONNX节点,要后面执行一对一转换之后才是合法的ONNX节点)全部返回。接下来利用这些ONNX节点来构造Graph类,方便后续对ONNX模型进行修改。Graph类的实现在https://github.com/Oneflow-Inc/oneflow_convert_tools/blob/18e041d92654cfc8b03e16c906c451a405c99fd2/oneflow_onnx/onnx_wrapper.py
,这个文件主要是定义了onnx graph和node的wrapper,包含各种修改 onnx 图结构的 api,这里复用了tensorflow-onnx项目的相关代码。注意构造Graph类之后还并没有构造ONNX模型,因为OneFlow的OP还没有一对一的转换为ONNX的OP。
接下来,我们调用handler.flow_op.CreateMapping(g.opset, g.extra_opset)
这个函数,代码实现如下:
def CreateMapping(max_onnx_opset_version, extra_opsets): """Create the final mapping dictionary by stacking domains and opset versions. :param max_onnx_opset_version: The highest onnx opset the resulting graph may use. :param extra_opsets: Extra opsets the resulting graph may use. """ mapping = {constants.ONNX_DOMAIN: max_onnx_opset_version} if extra_opsets: for extra_opset in extra_opsets: mapping[extra_opset.domain] = extra_opset.version ops_mapping = {} for domain, opsets in flow_op.get_opsets().items(): for target_opset, op_map in enumerate(opsets): print('='*100) print(target_opset) print(op_map) m = mapping.get(domain) if m: if target_opset <= m and op_map: ops_mapping.update(op_map) flow_op._MAPPING = ops_mapping return ops_mapping
这个函数做的事情就是将每个ONNX Opset版本号(也就是for循环中的domain
)和(OneFlow OP和ONNX OP的mapper,这个mapper是如何获得的请看后文)关联起来并返回,我们打印一下target_opset
和op_map
就可以理解了。以AlexNet为例打印如下:
====================================================================================================0{}====================================================================================================1{'add_n': (>, 'Sum', {}), 'leaky_relu': ( >, 'LeakyRelu', {}), 'softplus': ( >, 'Softplus', {}), 'abs': ( >, 'Abs', {}), 'ceil': ( >, 'Ceil', {}), 'elu': ( >, 'Elu', {}), 'exp': ( >, 'Exp', {}), 'floor': ( >, 'Floor', {}), 'log': ( >, 'Log', {}), 'neg': ( >, 'Neg', {}), 'sigmoid': ( >, 'Sigmoid', {}), 'sigmoid_v2': ( >, 'Sigmoid', {}), 'sqrt': ( >, 'Sqrt', {}), 'tanh': ( >, 'Tanh', {}), 'reciprocal': ( >, 'Reciprocal', {}), 'relu': ( >, 'Relu', {}), 'broadcast_maximum': ( >, 'Max', {}), 'broadcast_minimum': ( >, 'Min', {}), 'clip_by_scalar': ( >, 'Clip', {}), 'clip_by_scalar_min': ( >, 'Clip', {}), 'clip_by_scalar_max': ( >, 'Clip', {}), 'softmax': ( >, 'Softmax', {}), 'square': ( >, None, {}), 'rsqrt': ( >, None, {}), 'squared_difference': ( >, None, {}), 'sign': ( >, 'Sign', {}), 'matmul': ( >, 'MatMul', {}), 'batch_matmul': ( >, 'MatMul', {}), 'erf': ( >, 'Erf', {}), 'logical_not': ( >, 'Not', {}), 'broadcast_logical_or': ( >, 'Or', {}), 'broadcast_logical_and': ( >, 'And', {}), 'input': ( >, None, {}), 'return': ( >, None, {}), 'variable': ( >, None, {}), 'distribute_split': ( >, 'Identity', {}), 'distribute_concat': ( >, 'Identity', {}), 'distribute_clone': ( >, 'Identity', {}), 'distribute_add': ( >, 'Identity', {}), 'conv2d': ( >, None, {}), 'max_pool_2d': ( >, 'MaxPool', {}), 'avg_pool_2d': ( >, 'AveragePool', {}), 'reduce_prod': ( >, 'ReduceProd', {}), 'reduce_sum': ( >, 'ReduceSum', {}), 'reduce_min': ( >, 'ReduceMin', {}), 'argmax': ( >, 'ArgMax', {}), 'argmin': ( >, 'ArgMin', {}), 'squeeze': ( >, 'Squeeze', {}), 'transpose': ( >, 'Transpose', {}), 'concat': ( >, 'Concat', {}), 'identity': ( >, 'Identity', {})}====================================================================================================2{'pad': ( >, 'Pad', {})}====================================================================================================3{}====================================================================================================4{}====================================================================================================5{'reshape': ( >, 'Reshape', {})}====================================================================================================6{'broadcast_div': ( >, 'Div', {}), 'scalar_div_by_tensor': ( >, 'Div', {}), 'multiply': ( >, 'Mul', {}), 'broadcast_mul': ( >, 'Mul', {}), 'scalar_mul_by_tensor': ( >, 'Mul', {}), 'broadcast_sub': ( >, 'Sub', {}), 'scalar_sub_by_tensor': ( >, 'Sub', {}), 'broadcast_add': ( >, 'Add', {}), 'scalar_add_by_tensor': ( >, 'Add', {}), 'scalar_add': ( >, 'Add', {}), 'scalar_mul': ( >, 'Mul', {}), 'bias_add': ( >, 'Add', {}), 'abs': ( >, 'Abs', {}), 'ceil': ( >, 'Ceil', {}), 'elu': ( >, 'Elu', {}), 'exp': ( >, 'Exp', {}), 'floor': ( >, 'Floor', {}), 'log': ( >, 'Log', {}), 'neg': ( >, 'Neg', {}), 'sigmoid': ( >, 'Sigmoid', {}), 'sigmoid_v2': ( >, 'Sigmoid', {}), 'sqrt': ( >, 'Sqrt', {}), 'tanh': ( >, 'Tanh', {}), 'reciprocal': ( >, 'Reciprocal', {}), 'relu': ( >, 'Relu', {}), 'broadcast_logical_or': ( >, 'Or', {}), 'broadcast_logical_and': ( >, 'And', {}), 'normalization': ( >, None, {}), 'cast': ( >, 'Cast', {})}====================================================================================================7{'acos': ( >, 'Acos', {}), 'asin': ( >, 'Asin', {}), 'atan': ( >, 'Atan', {}), 'cos': ( >, 'Cos', {}), 'sin': ( >, 'Sin', {}), 'tan': ( >, 'Tan', {}), 'broadcast_floor_mod': ( >, 'FloorMod', {}), 'broadcast_equal': ( >, 'Equal', {}), 'broadcast_not_equal': ( >, 'NotEqual', {}), 'broadcast_greater': ( >, 'Greater', {}), 'broadcast_less': ( >, 'Less', {}), 'broadcast_less_equal': ( >, 'Greater', {}), 'broadcast_greater_equal': ( >, 'Less', {})}====================================================================================================8{}====================================================================================================9{'acosh': ( >, 'Acosh', {}), 'asinh': ( >, 'Asinh', {}), 'atanh': ( >, 'Atanh', {}), 'cosh': ( >, 'Cosh', {}), 'sinh': ( >, 'Sinh', {}), 'sign': ( >, 'Sign', {}), 'erf': ( >, 'Erf', {}), 'normalization': ( >, None, {}), 'cast': ( >, 'Cast', {})}====================================================================================================10{'max_pool_2d': ( >, 'MaxPool', {}), 'avg_pool_2d': ( >, 'AveragePool', {}), 'min_max_observer': ( >, None, {}), 'moving_average_min_max_observer': ( >, None, {}), 'fake_quantization': ( >, 'QuantizeLinear', {})}====================================================================================================11{'clip_by_scalar': ( >, 'Clip', {}), 'clip_by_scalar_min': ( >, 'Clip', {}), 'clip_by_scalar_max': ( >, 'Clip', {}), 'softmax': ( >, 'Softmax', {}), 'round': ( >, 'Round', {}), 'broadcast_equal': ( >, 'Equal', {}), 'broadcast_not_equal': ( >, 'NotEqual', {}), 'conv2d': ( >, None, {}), 'max_pool_2d': ( >, 'MaxPool', {}), 'avg_pool_2d': ( >, 'AveragePool', {}), 'pad': ( >, 'Pad', {}), 'reduce_prod': ( >, 'ReduceProd', {}), 'reduce_sum': ( >, 'ReduceSum', {}), 'reduce_min': ( >, 'ReduceMin', {}), 'argmax': ( >, 'ArgMax', {}), 'argmin': ( >, 'ArgMin', {}), 'squeeze': ( >, 'Squeeze', {}), 'concat': ( >, 'Concat', {}), 'gather_nd': ( >, 'GatherND', {})}====================================================================================================12{}====================================================================================================13{'min_max_observer': ( >, None, {}), 'fake_quantization': ( >, 'QuantizeLinear', {})}
可以看到对于ONNX的每一个Opset Version的OP都对应了OneFlow实现的OP,需要特别注意的是这个OP Mapper过程在是在https://github.com/Oneflow-Inc/oneflow_convert_tools/tree/main/oneflow_onnx/oneflow2onnx/handlers
这里完成的,只要安装了oneflow-onnx这个包或者编译了oneflow-onnx工程源码,Python就会自动将OneFlow的OP和ONNX的OP进行映射,这是通过@flow_op(["avg_pool_2d"], onnx_op="AveragePool")
装饰器来实现的,flow_op
装饰器的具体实现在https://github.com/Oneflow-Inc/oneflow_convert_tools/blob/main/oneflow_onnx/oneflow2onnx/handler.py#L34
这里。
完成了ONNX每个Opset版本的OP和OneFlow OP的mapper之后,我们需要对Graph
里面的ONNX节点(注意现在的ONNX节点并不是合法的ONNX节点,因为还没有执行一对一的转换,只是复制了OneFlow OP的类型、输入输出和属性值)先执行拓扑排序,然后再一对一的转换。这个地方很有意思,为什么要进行拓扑排序呢?
我们首先需要了解一下拓扑序算法,拓扑排序要解决的问题是给一个图的所有节点排序。
以下对拓扑排序的解释引自oi.wiki。
我们可以拿大学选课的例子来描述这个过程,比如学习大学课程中有:单变量微积分,线性代数,离散数学概述,概率论与统计学概述,语言基础,算法导论,机器学习。当我们想要学习 算法导论 的时候,就必须先学会 离散数学概述 和 概率论与统计学概述,不然在课堂就会听的一脸懵逼。当然还有一个更加前的课程 单变量微积分。这些课程就相当于几个顶点 , 顶点之间的有向边 就相当于学习课程的顺序。显然拓扑排序不是那么的麻烦,不然你是如何选出合适的学习顺序。下面将介绍如何将这个过程抽象出来,用算法来实现。
但是如果某一天排课的老师打瞌睡了,说想要学习 算法导论,还得先学 机器学习,而 机器学习 的前置课程又是 算法导论,然后你就一万脸懵逼了,我到底应该先学哪一个?当然我们在这里不考虑什么同时学几个课程的情况。在这里,算法导论 和 机器学习 间就出现了一个环,显然你现在没办法弄清楚你需要学什么了,于是你也没办法进行拓扑排序了。因而如果有向图中存在环路,那么我们就没办法进行 拓扑排序 了。
因此我们可以说 在一个 DAG(有向无环图),我们将图中的顶点以线性方式进行排序,使得对于任何的顶点 到 的有向边 , 都可以有 在 的前面。
还有给定一个 DAG,如果从 到 有边,则认为 依赖于 。如果 到 有路径( 可达 ),则称 间接依赖于 。
拓扑排序的目标是将所有节点排序,使得排在前面的节点不能依赖于排在后面的节点。 伪代码实现如下:
void TopologicalSort(Graph G){ InitStack(S); for(i = 0;i < G.vexnum; i++){ if(indegrdd[i]==0) Push(S, i); } int count =0; while(!Empty(S)){ Pop(S,i); print[count++] = i; for(p = G.vertices[i].firstarc; p; p = p->nextarc){ v = p->adjvex; if(!(--indegree[v])) Push(S, v); } } if(count < G.vexnum) return false; else return true;}
上面加粗的这句话即是拓扑排序的核心。一般深度学习模型也是一个DAG(有向无环图),我们这里同样使用了拓扑排序算法使得我们在一对一转换OP时和真实的网络结构是完全一致的。另外考虑到这里可能插入了一些新的节点如Identity可能会破坏原Graph的拓扑序,以及时刻需要判断计算图是否是一个完整合法的DAG,使用拓扑排序都是没有坏处的。
完成拓扑排序之后我们就可以执行FlowOnnxMapping
完成OneFlow OP和ONNX OP的一对一转换了,代码如下:
def FlowOnnxMapping(g, ops_mapping): logger.debug("Mapping Oneflow node to ONNX node(s)") mapped_op = collections.Counter() unmapped_op = collections.Counter() exceptions = [] ops = list(g.get_nodes()) for node in ops: logger.debug("Process node: %s\n%s", node.name, node.summary) if node.skip_conversion: logger.debug("explicitly skip node " + node.name) continue op = node.op_type map_info = ops_mapping.get(op) if map_info is None: unmapped_op[op] += 1 logger.error("oneflow op [%s: %s] is not supported", node.name, op) continue mapped_op[op] += 1 func, onnx_op, kwargs = map_info if onnx_op is not None: node.op_type = onnx_op try: func(g, node, **kwargs) node.skip_conversion = True except Exception as ex: logger.error( "Failed to convert node %s\n%s", node.name, node.summary, exc_info=1 ) exceptions.append(ex) return mapped_op, unmapped_op, exceptions
执行完这个函数会返回map上的OP容器,以及没有map上的OP容器,当然如果Graph
中有OP没有map上也就是转换失败会抛出错误信息给用户。在转换完成之后,我们调用Graph
中的每个Node
的UpdateProto()
构造函数将之前的假ONNX节点信息更新成真的ONNX节点信息。
接下来,我们调用各种 optimizer 优化网络结构,例如尽可能消除 nhwc->nchw 带来的 transpose op(Export 函数内的 optimizer.OptimizeGraph),即https://github.com/Oneflow-Inc/oneflow_convert_tools/blob/main/oneflow_onnx/oneflow2onnx/flow2onnx.py#L264
。在oneflow-onnx里面主要有以下几种optimizer:
oneflow-onnx里面的optimizer,获得更优的ONNX模型
这些 optimizer 继承自 tensorflow-onnx,我们后续会将其中的一部分用 onnx 原生的 optimizer 替代。
在优化了ONNX模型之后,最后调用下面的函数取磁盘中保存的 oneflow 权重,赋给 onnx 模型对象,并返回 protobuf 格式的 onnx 模型对象。至此就完成了创建合法的ONNX模型。
model_proto = onnx_graph.MakeModel( job_name, onnx_filename, external_data=external_data )
我们的X2OneFlow分为X2ONNX和ONNX2Oneflow两个步骤,其中ONNX2OneFlow和OneFlow2ONNX共用了一套基础代码,所以需要修改的地方仅仅是将handles
里面的注册OP转换的装饰器改个方向即可,这里不再赘述。
想了解更多细节可以看我们的源码https://github.com/Oneflow-Inc/oneflow_convert_tools/tree/main/oneflow_onnx
。
到此,相信大家对"OneFlow是如何和ONNX交互的"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!