千家信息网

Centos7安装ElasticSearch实例分析

发表于:2025-01-19 作者:千家信息网编辑
千家信息网最后更新 2025年01月19日,今天小编给大家分享一下Centos7安装ElasticSearch实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后
千家信息网最后更新 2025年01月19日Centos7安装ElasticSearch实例分析

今天小编给大家分享一下Centos7安装ElasticSearch实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

1.下载elasticsearch 6.4.1安装包

2.解压压缩包

[root@localhost elasticsearch]# tar -zxvf elasticsearch-6.4.1.tar.gz

3.启动elasticsearch

[root@localhost bin]# ./elasticsearch

以后台方式启动

[root@localhost bin]# ./elasticsearch -d

tips:

[root@localhost bin]# ./elasticsearch[2018-09-19t19:46:09,817][warn ][o.e.b.elasticsearchuncaughtexceptionhandler] [] uncaught exception in thread [main]org.elasticsearch.bootstrap.startupexception: java.lang.runtimeexception: can not run elasticsearch as root  at org.elasticsearch.bootstrap.elasticsearch.init(elasticsearch.java:140) ~[elasticsearch-6.4.1.jar:6.4.1]  at org.elasticsearch.bootstrap.elasticsearch.execute(elasticsearch.java:127) ~[elasticsearch-6.4.1.jar:6.4.1]  at org.elasticsearch.cli.environmentawarecommand.execute(environmentawarecommand.java:86) ~[elasticsearch-6.4.1.jar:6.4.1]  at org.elasticsearch.cli.command.mainwithouterrorhandling(command.java:124) ~[elasticsearch-cli-6.4.1.jar:6.4.1]  at org.elasticsearch.cli.command.main(command.java:90) ~[elasticsearch-cli-6.4.1.jar:6.4.1]  at org.elasticsearch.bootstrap.elasticsearch.main(elasticsearch.java:93) ~[elasticsearch-6.4.1.jar:6.4.1]  at org.elasticsearch.bootstrap.elasticsearch.main(elasticsearch.java:86) ~[elasticsearch-6.4.1.jar:6.4.1]caused by: java.lang.runtimeexception: can not run elasticsearch as root  at org.elasticsearch.bootstrap.bootstrap.initializenatives(bootstrap.java:104) ~[elasticsearch-6.4.1.jar:6.4.1]  at org.elasticsearch.bootstrap.bootstrap.setup(bootstrap.java:171) ~[elasticsearch-6.4.1.jar:6.4.1]  at org.elasticsearch.bootstrap.bootstrap.init(bootstrap.java:326) ~[elasticsearch-6.4.1.jar:6.4.1]  at org.elasticsearch.bootstrap.elasticsearch.init(elasticsearch.java:136) ~[elasticsearch-6.4.1.jar:6.4.1]

elasticsearch 不能以root用户角色启动,因此需要将安装目录授权给其他用户,用其他用户来启动

启动成功后,验证,打开新的终端,执行如下命令:

[root@localhost ~]# curl 'http://localhost:9200/?pretty'{ "name" : "o5bavye", "cluster_name" : "elasticsearch", "cluster_uuid" : "rw1yjlzksgodxkuvgixmxg", "version" : {  "number" : "6.4.1",  "build_flavor" : "default",  "build_type" : "tar",  "build_hash" : "e36acdb",  "build_date" : "2018-09-13t22:18:07.696808z",  "build_snapshot" : false,  "lucene_version" : "7.4.0",  "minimum_wire_compatibility_version" : "5.6.0",  "minimum_index_compatibility_version" : "5.0.0" }, "tagline" : "you know, for search"}[root@localhost ~]#

返回信息则表示安装成功!

4.安装kibana

sense 是一个 kibana 应用 它提供交互式的控制台,通过你的浏览器直接向 elasticsearch 提交请求。 这本书的在线版本包含有一个 view in sense 的链接,里面有许多代码示例。当点击的时候,它会打开一个代码示例的sense控制台。 你不必安装 sense,但是它允许你在本地的 elasticsearch 集群上测试示例代码,从而使本书更具有交互性。

下载kibana

kibana是一个为 elasticsearch 提供的数据分析的 web 接口。可使用它对日志进行高效的搜索、可视化、分析等各种操作

下载完成解压kibana

[root@localhost elasticsearch]# tar -zxvf kibana-6.4.1-linux-x86_64.tar.gz

修改 配置config目录下的kibana.yml 文件,配置elasticsearch地址和kibana地址信息

server.host: "192.168.92.50" # kibana 服务器地址elasticsearch.url: "http://192.168.92.50:9200"  # es 地址

启动 kibana

[root@localhost bin]# ./kibana

安装kibana本机访问:http://localhost:5601/

选择dev tools菜单,即可实现可视化请求

5.安装logstash

下载logstash

下载完成解压后,config目录下配置日志收集日志配置文件 logstash.conf

# sample logstash configuration for creating a simple# beats -> logstash -> elasticsearch pipeline.input { tcp {  mode => "server"  host => "192.168.92.50"  port => 4560  codec => json_lines }}output { elasticsearch {  hosts => "192.168.92.50:9200"  index => "springboot-logstash-%{+yyyy.mm.dd}" }}

配置成功后启动logstatsh

[root@localhost bin]# ./logstash -f ../config/logstash.conf

es 一些基础知识:

索引(名词):

如前所述,一个 索引 类似于传统关系数据库中的一个 数据库 ,是一个存储关系型文档的地方。 索引 (index) 的复数词为 indices 或 indexes 。

索引(动词):

索引一个文档 就是存储一个文档到一个 索引 (名词)中以便它可以被检索和查询到。这非常类似于 sql 语句中的 insert 关键词,除了文档已存在时新文档会替换旧文档情况之外。

倒排索引:

关系型数据库通过增加一个 索引 比如一个 b树(b-tree)索引 到指定的列上,以便提升数据检索速度。elasticsearch 和 lucene 使用了一个叫做 倒排索引 的结构来达到相同的目的。

put /megacorp/employee/1{  "first_name" : "john",  "last_name" : "smith",  "age" :    25,  "about" :   "i love to go rock climbing",  "interests": [ "sports", "music" ]}

返回结果:

#! deprecation: the default number of shards will change from [5] to [1] in 7.0.0; if you wish to continue using the default of [5] shards, you must manage this on the create index request or with an index template{ "_index": "megacorp", "_type": "employee", "_id": "1", "_version": 1, "result": "created", "_shards": {  "total": 2,  "successful": 1,  "failed": 0 }, "_seq_no": 0, "_primary_term": 1}

路径 /megacorp/employee/1 包含了三部分的信息:

megacorp 索引名称

employee 类型名称

1 特定雇员的id

放置第二个雇员信息:

{ "_index": "megacorp", "_type": "employee", "_id": "2", "_version": 1, "result": "created", "_shards": {  "total": 2,  "successful": 1,  "failed": 0 }, "_seq_no": 0, "_primary_term": 1}

返回结果:

{ "_index": "megacorp", "_type": "employee", "_id": "2", "_version": 1, "result": "created", "_shards": {  "total": 2,  "successful": 1,  "failed": 0 }, "_seq_no": 0, "_primary_term": 1}

放置第三个雇员信息

{ "_index": "megacorp", "_type": "employee", "_id": "3", "_version": 1, "result": "created", "_shards": {  "total": 2,  "successful": 1,  "failed": 0 }, "_seq_no": 0, "_primary_term": 1}

5.检索文档

检索到单个雇员的数据

get /megacorp/employee/1

返回结果:

{ "_index": "megacorp", "_type": "employee", "_id": "1", "_version": 1, "found": true, "_source": {  "first_name": "john",  "last_name": "smith",  "age": 25,  "about": "i love to go rock climbing",  "interests": [   "sports",   "music"  ] }}

6.轻量搜索

一个 get 是相当简单的,可以直接得到指定的文档。 现在尝试点儿稍微高级的功能,比如一个简单的搜索!

第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:

get /megacorp/employee/_search

返回结果:

{ "took": 31, "timed_out": false, "_shards": {  "total": 5,  "successful": 5,  "skipped": 0,  "failed": 0 }, "hits": {  "total": 3,  "max_score": 1,  "hits": [   {    "_index": "megacorp",    "_type": "employee",    "_id": "2",    "_score": 1,    "_source": {     "first_name": "jane",     "last_name": "smith",     "age": 32,     "about": "i like to collect rock albums",     "interests": [      "music"     ]    }   },   {    "_index": "megacorp",    "_type": "employee",    "_id": "1",    "_score": 1,    "_source": {     "first_name": "john",     "last_name": "smith",     "age": 25,     "about": "i love to go rock climbing",     "interests": [      "sports",      "music"     ]    }   },   {    "_index": "megacorp",    "_type": "employee",    "_id": "3",    "_score": 1,    "_source": {     "first_name": "douglas",     "last_name": "fir",     "age": 35,     "about": "i like to build cabinets",     "interests": [      "forestry"     ]    }   }  ] }}

通过姓名模糊匹配来获得结果

get /megacorp/employee/_search?q=last_name:smith

返回结果:

{ "took": 414, "timed_out": false, "_shards": {  "total": 5,  "successful": 5,  "skipped": 0,  "failed": 0 }, "hits": {  "total": 2,  "max_score": 0.2876821,  "hits": [   {    "_index": "megacorp",    "_type": "employee",    "_id": "2",    "_score": 0.2876821,    "_source": {     "first_name": "jane",     "last_name": "smith",     "age": 32,     "about": "i like to collect rock albums",     "interests": [      "music"     ]    }   },   {    "_index": "megacorp",    "_type": "employee",    "_id": "1",    "_score": 0.2876821,    "_source": {     "first_name": "john",     "last_name": "smith",     "age": 25,     "about": "i love to go rock climbing",     "interests": [      "sports",      "music"     ]    }   }  ] }}

7.使用查询表达式搜索

领域特定语言 (dsl), 指定了使用一个 json 请求

get /megacorp/employee/_search{  "query" : {    "match" : {      "last_name" : "smith"    }  }}

返回结果:

{ "took": 7, "timed_out": false, "_shards": {  "total": 5,  "successful": 5,  "skipped": 0,  "failed": 0 }, "hits": {  "total": 2,  "max_score": 0.2876821,  "hits": [   {    "_index": "megacorp",    "_type": "employee",    "_id": "2",    "_score": 0.2876821,    "_source": {     "first_name": "jane",     "last_name": "smith",     "age": 32,     "about": "i like to collect rock albums",     "interests": [      "music"     ]    }   },   {    "_index": "megacorp",    "_type": "employee",    "_id": "1",    "_score": 0.2876821,    "_source": {     "first_name": "john",     "last_name": "smith",     "age": 25,     "about": "i love to go rock climbing",     "interests": [      "sports",      "music"     ]    }   }  ] }}

8.更复杂的搜索

搜索姓氏为 smith 的雇员,但这次我们只需要年龄大于 30 的,使用过滤器 filter ,它支持高效地执行一个结构化查询

get /megacorp/employee/_search{  "query" : {    "bool": {      "must": {        "match" : {          "last_name" : "smith"         }      },      "filter": {        "range" : {          "age" : { "gt" : 30 }         }      }    }  }}

其中:range 过滤器 , 它能找到年龄大于 30 的文档,其中 gt 表示_大于(_great than)

返回结果:

{ "took": 44, "timed_out": false, "_shards": {  "total": 5,  "successful": 5,  "skipped": 0,  "failed": 0 }, "hits": {  "total": 1,  "max_score": 0.2876821,  "hits": [   {    "_index": "megacorp",    "_type": "employee",    "_id": "2",    "_score": 0.2876821,    "_source": {     "first_name": "jane",     "last_name": "smith",     "age": 32,     "about": "i like to collect rock albums",     "interests": [      "music"     ]    }   }  ] }}

9.全文搜索

搜索下所有喜欢攀岩(rock climbing)的雇员

get /megacorp/employee/_search{  "query" : {    "match" : {      "about" : "rock climbing"    }  }}

返回结果:

{ "took": 17, "timed_out": false, "_shards": {  "total": 5,  "successful": 5,  "skipped": 0,  "failed": 0 }, "hits": {  "total": 2,  "max_score": 0.5753642,  "hits": [   {    "_index": "megacorp",    "_type": "employee",    "_id": "1",    "_score": 0.5753642,    "_source": {     "first_name": "john",     "last_name": "smith",     "age": 25,     "about": "i love to go rock climbing",     "interests": [      "sports",      "music"     ]    }   },   {    "_index": "megacorp",    "_type": "employee",    "_id": "2",    "_score": 0.2876821,    "_source": {     "first_name": "jane",     "last_name": "smith",     "age": 32,     "about": "i like to collect rock albums",     "interests": [      "music"     ]    }   }  ] }}

10.全文搜索

找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者短语 。 比如, 我们想执行这样一个查询,仅匹配同时包含 "rock" 和 "climbing" ,并且 二者以短语 "rock climbing" 的形式紧挨着的雇员记录。

get /megacorp/employee/_search{  "query" : {    "match_phrase" : {      "about" : "rock climbing"    }  }}

返回结果:

{ "took": 142, "timed_out": false, "_shards": {  "total": 5,  "successful": 5,  "skipped": 0,  "failed": 0 }, "hits": {  "total": 1,  "max_score": 0.5753642,  "hits": [   {    "_index": "megacorp",    "_type": "employee",    "_id": "1",    "_score": 0.5753642,    "_source": {     "first_name": "john",     "last_name": "smith",     "age": 25,     "about": "i love to go rock climbing",     "interests": [      "sports",      "music"     ]    }   }  ] }}

11.高亮搜索

许多应用都倾向于在每个搜索结果中 高亮 部分文本片段,以便让用户知道为何该文档符合查询条件。在 elasticsearch 中检索出高亮片段也很容易。

增加参数: highlight

get /megacorp/employee/_search{  "query" : {    "match_phrase" : {      "about" : "rock climbing"    }  },  "highlight": {    "fields" : {      "about" : {}    }  }}

返回结果:

{ "took": 250, "timed_out": false, "_shards": {  "total": 5,  "successful": 5,  "skipped": 0,  "failed": 0 }, "hits": {  "total": 1,  "max_score": 0.5753642,  "hits": [   {    "_index": "megacorp",    "_type": "employee",    "_id": "1",    "_score": 0.5753642,    "_source": {     "first_name": "john",     "last_name": "smith",     "age": 25,     "about": "i love to go rock climbing",     "interests": [      "sports",      "music"     ]    },    "highlight": {     "about": [      "i love to go rock climbing"     ]    }   }  ] }}

其中高亮模块为highlight属性

12.分析

elasticsearch 有一个功能叫聚合(aggregations),允许我们基于数据生成一些精细的分析结果。聚合与 sql 中的 group by 类似但更强大。

举个例子,挖掘出雇员中最受欢迎的兴趣爱好:

get /megacorp/employee/_search{ "aggs": {  "all_interests": {   "terms": { "field": "interests" }  } }}

返回结果:

{  ...  "hits": { ... },  "aggregations": {   "all_interests": {     "buckets": [      {        "key":    "music",        "doc_count": 2      },      {        "key":    "forestry",        "doc_count": 1      },      {        "key":    "sports",        "doc_count": 1      }     ]   }  }}

以上就是"Centos7安装ElasticSearch实例分析"这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注行业资讯频道。

0