大数据开发中Spark调优常用手段是什么
发表于:2024-11-23 作者:千家信息网编辑
千家信息网最后更新 2024年11月23日,大数据开发中Spark调优常用手段是什么,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。Spark调优spark调优常见手段,在生产中
千家信息网最后更新 2024年11月23日大数据开发中Spark调优常用手段是什么
大数据开发中Spark调优常用手段是什么,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
Spark调优
spark调优常见手段,在生产中常常会遇到各种各样的问题,有事前原因,有事中原因,也有不规范原因,spark调优总结下来可以从下面几个点来调优。
1. 分配更多的资源
分配更多的资源: 它是性能优化调优的王道,就是增加和分配更多的资源,这对于性能和速度上的提升是显而易见的, 基本上,在一定范围之内,增加资源与性能的提升,是成正比的;写完了一个复杂的spark作业之后,进行性能调优的时候,首先第一步,就是要来调节最优的资源配置; 在这个基础之上,如果说你的spark作业,能够分配的资源达到了你的能力范围的顶端之后,无法再分配更多的资源了,公司资源有限;那么才是考虑去做后面的这些性能调优的点。相关问题:(1)分配哪些资源?(2)在哪里可以设置这些资源?(3)剖析为什么分配这些资源之后,性能可以得到提升?
1.1 分配哪些资源
executor-memory、executor-cores、driver-memory
1.2 在哪里可以设置这些资源
在实际的生产环境中,提交spark任务时,使用spark-submit shell脚本,在里面调整对应的参数。 提交任务的脚本: spark-submit \ --master spark://node1:7077 \ --class com.hoult.WordCount \ --num-executors 3 \ 配置executor的数量 --driver-memory 1g \ 配置driver的内存(影响不大) --executor-memory 1g \ 配置每一个executor的内存大小 --executor-cores 3 \ 配置每一个executor的cpu个数 /export/servers/wordcount.jar
1.2 参数调节到多大,算是最大
==Standalone模式==
先计算出公司spark集群上的所有资源 每台节点的内存大小和cpu核数, 比如:一共有20台worker节点,每台节点8g内存,10个cpu。 实际任务在给定资源的时候,可以给20个executor、每个executor的内存8g、每个executor的使用的cpu个数10。
==Yarn模式==
先计算出yarn集群的所有大小,比如一共500g内存,100个cpu; 这个时候可以分配的最大资源,比如给定50个executor、每个executor的内存大小10g,每个executor使用的cpu个数为2。
使用原则
在资源比较充足的情况下,尽可能的使用更多的计算资源,尽量去调节到最大的大小
1.3 为什么调大资源以后性能可以提升
--executor-memory--total-executor-cores
2. 提高并行度
2.1 Spark的并行度指的是什么
spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度! 当分配完所能分配的最大资源了,然后对应资源去调节程序的并行度,如果并行度没有与资源相匹配,那么导致你分配下去的资源都浪费掉了。同时并行运行,还可以让每个task要处理的数量变少(很简单的原理。合理设置并行度,可以充分利用集群资源,减少每个task处理数据量,而增加性能加快运行速度。)
2.2 如何提高并行度
2.2.1 可以设置task的数量
至少设置成与spark Application 的总cpu core 数量相同。最理想情况,150个core,分配150task,一起运行,差不多同一时间运行完毕官方推荐,task数量,设置成spark Application 总cpu core数量的2~3倍 。 比如150个cpu core ,基本设置task数量为300~500. 与理想情况不同的,有些task会运行快一点,比如50s就完了,有些task 可能会慢一点,要一分半才运行完,所以如果你的task数量,刚好设置的跟cpu core 数量相同,可能会导致资源的浪费。 因为比如150个task中10个先运行完了,剩余140个还在运行,但是这个时候,就有10个cpu core空闲出来了,导致浪费。如果设置2~3倍,那么一个task运行完以后,另外一个task马上补上来,尽量让cpu core不要空闲。同时尽量提升spark运行效率和速度。提升性能。
2.2.2 如何设置task数量来提高并行度
设置参数spark.default.parallelism 默认是没有值的,如果设置了值为10,它会在shuffle的过程才会起作用。 比如 val rdd2 = rdd1.reduceByKey(_+_) 此时rdd2的分区数就是10 可以通过在构建SparkConf对象的时候设置,例如: new SparkConf().set("spark.defalut.parallelism","500")
2.2.3 给RDD重新设置partition的数量
使用rdd.repartition 来重新分区,该方法会生成一个新的rdd,使其分区数变大。此时由于一个partition对应一个task,那么对应的task个数越多,通过这种方式也可以提高并行度。
2.2.4 提高sparksql运行的task数量
http://spark.apache.org/docs/2.3.3/sql-programming-guide.html
通过设置参数 spark.sql.shuffle.partitions=500 默认为200;可以适当增大,来提高并行度。 比如设置为 spark.sql.shuffle.partitions=500
专门针对sparkSQL来设置的
3. RDD的重用和持久化
3.1 实际开发遇到的情况说明
如上图所示的计算逻辑:(1)当第一次使用rdd2做相应的算子操作得到rdd3的时候,就会从rdd1开始计算,先读取HDFS上的文件,然后对rdd1做对应的算子操作得到rdd2,再由rdd2计算之后得到rdd3。同样为了计算得到rdd4,前面的逻辑会被重新计算。(3)默认情况下多次对一个rdd执行算子操作,去获取不同的rdd,都会对这个rdd及之前的父rdd全部重新计算一次。这种情况在实际开发代码的时候会经常遇到,但是我们一定要避免一个rdd重复计算多次,否则会导致性能急剧降低。总结:可以把多次使用到的rdd,也就是公共rdd进行持久化,避免后续需要,再次重新计算,提升效率。
3.2 如何对rdd进行持久化
可以调用rdd的cache或者persist方法。
(1)cache方法默认是把数据持久化到内存中 ,例如:rdd.cache ,其本质还是调用了persist方法(2)persist方法中有丰富的缓存级别,这些缓存级别都定义在StorageLevel这个object中,可以结合实际的应用场景合理的设置缓存级别。例如: rdd.persist(StorageLevel.MEMORY_ONLY),这是cache方法的实现。
3.3 rdd持久化的时可以采用序列化
(1)如果正常将数据持久化在内存中,那么可能会导致内存的占用过大,这样的话,也许会导致OOM内存溢出。(2)当纯内存无法支撑公共RDD数据完全存放的时候,就优先考虑使用序列化的方式在纯内存中存储。将RDD的每个partition的数据,序列化成一个字节数组;序列化后,大大减少内存的空间占用。(3)序列化的方式,唯一的缺点就是,在获取数据的时候,需要反序列化。但是可以减少占用的空间和便于网络传输(4)如果序列化纯内存方式,还是导致OOM,内存溢出;就只能考虑磁盘的方式,内存+磁盘的普通方式(无序列化)。(5)为了数据的高可靠性,而且内存充足,可以使用双副本机制,进行持久化 持久化的双副本机制,持久化后的一个副本,因为机器宕机了,副本丢了,就还是得重新计算一次; 持久化的每个数据单元,存储一份副本,放在其他节点上面,从而进行容错; 一个副本丢了,不用重新计算,还可以使用另外一份副本。这种方式,仅仅针对你的内存资源极度充足。 比如: StorageLevel.MEMORY_ONLY_2
4. 广播变量的使用
4.1 场景描述
在实际工作中可能会遇到这样的情况,由于要处理的数据量非常大,这个时候可能会在一个stage中出现大量的task,比如有1000个task,这些task都需要一份相同的数据来处理业务,这份数据的大小为100M,该数据会拷贝1000份副本,通过网络传输到各个task中去,给task使用。这里会涉及大量的网络传输开销,同时至少需要的内存为1000*100M=100G,这个内存开销是非常大的。不必要的内存的消耗和占用,就导致了你在进行RDD持久化到内存,也许就没法完全在内存中放下;就只能写入磁盘,最后导致后续的操作在磁盘IO上消耗性能;这对于spark任务处理来说就是一场灾难。 由于内存开销比较大,task在创建对象的时候,可能会出现堆内存放不下所有对象,就会导致频繁的垃圾回收器的回收GC。GC的时候一定是会导致工作线程停止,也就是导致Spark暂停工作那么一点时间。频繁GC的话,对Spark作业的运行的速度会有相当可观的影响。
4.2 广播变量引入
Spark中分布式执行的代码需要传递到各个executor的task上运行。对于一些只读、固定的数据,每次都需要Driver广播到各个Task上,这样效率低下。广播变量允许将变量只广播给各个executor。该executor上的各个task再从所在节点的BlockManager(负责管理某个executor对应的内存和磁盘上的数据)获取变量,而不是从Driver获取变量,从而提升了效率。
广播变量,初始的时候,就在Drvier上有一份副本。通过在Driver把共享数据转换成广播变量。 task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中,尝试获取变量副本;如果本地没有,那么就从Driver远程拉取广播变量副本,并保存在本地的BlockManager中; 此后这个executor上的task,都会直接使用本地的BlockManager中的副本。那么这个时候所有该executor中的task都会使用这个广播变量的副本。也就是说一个executor只需要在第一个task启动时,获得一份广播变量数据,之后的task都从本节点的BlockManager中获取相关数据。 executor的BlockManager除了从driver上拉取,也可能从其他节点的BlockManager上拉取变量副本,网络距离越近越好。
4.3 使用广播变量后的性能分析
比如一个任务需要50个executor,1000个task,共享数据为100M。(1)在不使用广播变量的情况下,1000个task,就需要该共享数据的1000个副本,也就是说有1000份数需要大量的网络传输和内存开销存储。耗费的内存大小1000*100=100G.(2)使用了广播变量后,50个executor就只需要50个副本数据,而且不一定都是从Driver传输到每个节点,还可能是就近从最近的节点的executor的blockmanager上拉取广播变量副本,网络传输速度大大增加;内存开销 50*100M=5G总结: 不使用广播变量的内存开销为100G,使用后的内存开销5G,这里就相差了20倍左右的网络传输性能损耗和内存开销,使用广播变量后对于性能的提升和影响,还是很可观的。 广播变量的使用不一定会对性能产生决定性的作用。比如运行30分钟的spark作业,可能做了广播变量以后,速度快了2分钟,或者5分钟。但是一点一滴的调优,积少成多。最后还是会有效果的。
4.4 广播变量使用注意事项
(1)能不能将一个RDD使用广播变量广播出去? 不能,因为RDD是不存储数据的。可以将RDD的结果广播出去。(2)广播变量只能在Driver端定义,不能在Executor端定义。(3)在Driver端可以修改广播变量的值,在Executor端无法修改广播变量的值。(4)如果executor端用到了Driver的变量,如果不使用广播变量在Executor有多少task就有多少Driver端的变量副本。(5)如果Executor端用到了Driver的变量,如果使用广播变量在每个Executor中只有一份Driver端的变量副本。
4.5 如何使用广播变量
例如
(1) 通过sparkContext的broadcast方法把数据转换成广播变量,类型为Broadcast, val broadcastArray: Broadcast[Array[Int]] = sc.broadcast(Array(1,2,3,4,5,6)) (2) 然后executor上的BlockManager就可以拉取该广播变量的副本获取具体的数据。 获取广播变量中的值可以通过调用其value方法 val array: Array[Int] = broadcastArray.value
5. 尽量避免使用shuffle类算子
5.1 shuffle描述
spark中的shuffle涉及到数据要进行大量的网络传输,下游阶段的task任务需要通过网络拉取上阶段task的输出数据,shuffle过程,简单来说,就是将分布在集群中多个节点上的同一个key,拉取到同一个节点上,进行聚合或join等操作。比如reduceByKey、join等算子,都会触发shuffle操作。 如果有可能的话,要尽量避免使用shuffle类算子。 因为Spark作业运行过程中,最消耗性能的地方就是shuffle过程。
5.2 哪些算子操作会产生shuffle
spark程序在开发的过程中使用reduceByKey、join、distinct、repartition等算子操作,这里都会产生shuffle,由于shuffle这一块是非常耗费性能的,实际开发中尽量使用map类的非shuffle算子。这样的话,没有shuffle操作或者仅有较少shuffle操作的Spark作业,可以大大减少性能开销。
5.3 如何避免产生shuffle
小案例
//错误的做法:// 传统的join操作会导致shuffle操作。// 因为两个RDD中,相同的key都需要通过网络拉取到一个节点上,由一个task进行join操作。val rdd3 = rdd1.join(rdd2) //正确的做法:// Broadcast+map的join操作,不会导致shuffle操作。// 使用Broadcast将一个数据量较小的RDD作为广播变量。val rdd2Data = rdd2.collect()val rdd2DataBroadcast = sc.broadcast(rdd2Data)// 在rdd1.map算子中,可以从rdd2DataBroadcast中,获取rdd2的所有数据。// 然后进行遍历,如果发现rdd2中某条数据的key与rdd1的当前数据的key是相同的,那么就判定可以进行join。// 此时就可以根据自己需要的方式,将rdd1当前数据与rdd2中可以连接的数据,拼接在一起(String或Tuple)。val rdd3 = rdd1.map(rdd2DataBroadcast...)// 注意,以上操作,建议仅仅在rdd2的数据量比较少(比如几百M,或者一两G)的情况下使用。// 因为每个Executor的内存中,都会驻留一份rdd2的全量数据。
5.4 使用map-side预聚合的shuffle操作
map-side预聚合
如果因为业务需要,一定要使用shuffle操作,无法用map类的算子来替代,那么尽量使用可以map-side预聚合的算子。 所谓的map-side预聚合,说的是在每个节点本地对相同的key进行一次聚合操作,类似于MapReduce中的本地combiner。 map-side预聚合之后,每个节点本地就只会有一条相同的key,因为多条相同的key都被聚合起来了。其他节点在拉取所有节点上的相同key时,就会大大减少需要拉取的数据数量,从而也就减少了磁盘IO以及网络传输开销。 通常来说,在可能的情况下,建议使用reduceByKey或者aggregateByKey算子来替代掉groupByKey算子。因为reduceByKey和aggregateByKey算子都会使用用户自定义的函数对每个节点本地的相同key进行预聚合。 而groupByKey算子是不会进行预聚合的,全量的数据会在集群的各个节点之间分发和传输,性能相对来说比较差。 比如如下两幅图,就是典型的例子,分别基于reduceByKey和groupByKey进行单词计数。其中第一张图是groupByKey的原理图,可以看到,没有进行任何本地聚合时,所有数据都会在集群节点之间传输;第二张图是reduceByKey的原理图,可以看到,每个节点本地的相同key数据,都进行了预聚合,然后才传输到其他节点上进行全局聚合。
==groupByKey进行单词计数原理==
==reduceByKey单词计数原理==
6. 使用高性能的算子
6.1 使用reduceByKey/aggregateByKey替代groupByKey
reduceByKey/aggregateByKey 可以进行预聚合操作,减少数据的传输量,提升性能
groupByKey 不会进行预聚合操作,进行数据的全量拉取,性能比较低
6.2 使用mapPartitions替代普通map
mapPartitions类的算子,一次函数调用会处理一个partition所有的数据,而不是一次函数调用处理一条,性能相对来说会高一些。 但是有的时候,使用mapPartitions会出现OOM(内存溢出)的问题。因为单次函数调用就要处理掉一个partition所有的数据,如果内存不够,垃圾回收时是无法回收掉太多对象的,很可能出现OOM异常。所以使用这类操作时要慎重!
6.3 使用foreachPartition替代foreach
原理类似于"使用mapPartitions替代map",也是一次函数调用处理一个partition的所有数据,而不是一次函数调用处理一条数据。 在实践中发现,foreachPartitions类的算子,对性能的提升还是很有帮助的。比如在foreach函数中,将RDD中所有数据写MySQL,那么如果是普通的foreach算子,就会一条数据一条数据地写,每次函数调用可能就会创建一个数据库连接,此时就势必会频繁地创建和销毁数据库连接,性能是非常低下; 但是如果用foreachPartitions算子一次性处理一个partition的数据,那么对于每个partition,只要创建一个数据库连接即可,然后执行批量插入操作,此时性能是比较高的。实践中发现,对于1万条左右的数据量写MySQL,性能可以提升30%以上。
6.4 使用filter之后进行coalesce操作
通常对一个RDD执行filter算子过滤掉RDD中较多数据后(比如30%以上的数据),建议使用coalesce算子,手动减少RDD的partition数量,将RDD中的数据压缩到更少的partition中去。 因为filter之后,RDD的每个partition中都会有很多数据被过滤掉,此时如果照常进行后续的计算,其实每个task处理的partition中的数据量并不是很多,有一点资源浪费,而且此时处理的task越多,可能速度反而越慢。 因此用coalesce减少partition数量,将RDD中的数据压缩到更少的partition之后,只要使用更少的task即可处理完所有的partition。在某些场景下,对于性能的提升会有一定的帮助。
6.5 使用repartitionAndSortWithinPartitions替代repartition与sort类操作
repartitionAndSortWithinPartitions是Spark官网推荐的一个算子,官方建议,如果需要在repartition重分区之后,还要进行排序,建议直接使用repartitionAndSortWithinPartitions算子。 因为该算子可以一边进行重分区的shuffle操作,一边进行排序。shuffle与sort两个操作同时进行,比先shuffle再sort来说,性能可能是要高的。
7. 使用Kryo优化序列化性能
7.1 spark序列化介绍
Spark在进行任务计算的时候,会涉及到数据跨进程的网络传输、数据的持久化,这个时候就需要对数据进行序列化。Spark默认采用Java的序列化器。默认java序列化的优缺点如下:其好处: 处理起来方便,不需要我们手动做其他操作,只是在使用一个对象和变量的时候,需要实现Serializble接口。其缺点: 默认的序列化机制的效率不高,序列化的速度比较慢;序列化以后的数据,占用的内存空间相对还是比较大。Spark支持使用Kryo序列化机制。Kryo序列化机制,比默认的Java序列化机制,速度要快,序列化后的数据要更小,大概是Java序列化机制的1/10。所以Kryo序列化优化以后,可以让网络传输的数据变少;在集群中耗费的内存资源大大减少。
7.2 Kryo序列化启用后生效的地方
Kryo序列化机制,一旦启用以后,会生效的几个地方:(1)算子函数中使用到的外部变量 算子中的外部变量可能来着与driver需要涉及到网络传输,就需要用到序列化。 最终可以优化网络传输的性能,优化集群中内存的占用和消耗 (2)持久化RDD时进行序列化,StorageLevel.MEMORY_ONLY_SER 将rdd持久化时,对应的存储级别里,需要用到序列化。 最终可以优化内存的占用和消耗;持久化RDD占用的内存越少,task执行的时候,创建的对象,就不至于频繁的占满内存,频繁发生GC。 (3) 产生shuffle的地方,也就是宽依赖 下游的stage中的task,拉取上游stage中的task产生的结果数据,跨网络传输,需要用到序列化。最终可以优化网络传输的性能
7.3 如何开启Kryo序列化机制
// 创建SparkConf对象。val conf = new SparkConf().setMaster(...).setAppName(...)// 设置序列化器为KryoSerializer。conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")// 注册要序列化的自定义类型。conf.registerKryoClasses(Array(classOf[MyClass1], classOf[MyClass2]))
8. 使用fastutil优化数据格式
8.1 fastutil介绍
fastutil是扩展了Java标准集合框架(Map、List、Set;HashMap、ArrayList、HashSet)的类库,提供了特殊类型的map、set、list和queue;fastutil能够提供更小的内存占用,更快的存取速度;我们使用fastutil提供的集合类,来替代自己平时使用的JDK的原生的Map、List、Set.
8.2 fastutil好处
fastutil集合类,可以减小内存的占用,并且在进行集合的遍历、根据索引(或者key)获取元素的值和设置元素的值的时候,提供更快的存取速度
8.3 Spark中应用fastutil的场景和使用
8.3.1 算子函数使用了外部变量
(1)你可以使用Broadcast广播变量优化;(2)可以使用Kryo序列化类库,提升序列化性能和效率;(3)如果外部变量是某种比较大的集合,那么可以考虑使用fastutil改写外部变量;首先从源头上就减少内存的占用(fastutil),通过广播变量进一步减少内存占用,再通过Kryo序列化类库进一步减少内存占用。
8.3.2 算子函数里使用了比较大的集合Map/List
在你的算子函数里,也就是task要执行的计算逻辑里面,如果有逻辑中,出现,要创建比较大的Map、List等集合,可能会占用较大的内存空间,而且可能涉及到消耗性能的遍历、存取等集合操作; 那么此时,可以考虑将这些集合类型使用fastutil类库重写,使用了fastutil集合类以后,就可以在一定程度上,减少task创建出来的集合类型的内存占用。 避免executor内存频繁占满,频繁唤起GC,导致性能下降。
8.3.3 fastutil的使用
第一步:在pom.xml中引用fastutil的包第二步:平时使用List (Integer)的替换成IntList即可。 List fastutil fastutil 5.0.9 的list对应的到fastutil就是IntList类型 使用说明:基本都是类似于IntList的格式,前缀就是集合的元素类型; 特殊的就是Map,Int2IntMap,代表了key-value映射的元素类型。
9. 调节数据本地化等待时长
Spark在Driver上对Application的每一个stage的task进行分配之前,都会计算出每个task要计算的是哪个分片数据,RDD的某个partition;Spark的task分配算法,优先会希望每个task正好分配到它要计算的数据所在的节点,这样的话就不用在网络间传输数据; 但是通常来说,有时事与愿违,可能task没有机会分配到它的数据所在的节点,为什么呢,可能那个节点的计算资源和计算能力都满了;所以这种时候,通常来说,Spark会等待一段时间,默认情况下是3秒(不是绝对的,还有很多种情况,对不同的本地化级别,都会去等待),到最后实在是等待不了了,就会选择一个比较差的本地化级别,比如说将task分配到距离要计算的数据所在节点比较近的一个节点,然后进行计算。
9.1 本地化级别
(1)PROCESS_LOCAL:进程本地化 代码和数据在同一个进程中,也就是在同一个executor中;计算数据的task由executor执行,数据在executor的BlockManager中;性能最好(2)NODE_LOCAL:节点本地化 代码和数据在同一个节点中;比如说数据作为一个HDFS block块,就在节点上,而task在节点上某个executor中运行;或者是数据和task在一个节点上的不同executor中;数据需要在进程间进行传输;性能其次(3)RACK_LOCAL:机架本地化 数据和task在一个机架的两个节点上;数据需要通过网络在节点之间进行传输; 性能比较差(4) ANY:无限制 数据和task可能在集群中的任何地方,而且不在一个机架中;性能最差
9.2 数据本地化等待时长
spark.locality.wait,默认是3s首先采用最佳的方式,等待3s后降级,还是不行,继续降级...,最后还是不行,只能够采用最差的。
9.3 如何调节参数并且测试
修改spark.locality.wait参数,默认是3s,可以增加下面是每个数据本地化级别的等待时间,默认都是跟spark.locality.wait时间相同,默认都是3s(可查看spark官网对应参数说明,如下图所示)spark.locality.wait.nodespark.locality.wait.processspark.locality.wait.rack
在代码中设置:new SparkConf().set("spark.locality.wait","10")然后把程序提交到spark集群中运行,注意观察日志,spark作业的运行日志,推荐大家在测试的时候,先用client模式,在本地就直接可以看到比较全的日志。 日志里面会显示,starting task .... PROCESS LOCAL、NODE LOCAL.....例如:Starting task 0.0 in stage 1.0 (TID 2, 192.168.200.102, partition 0, NODE_LOCAL, 5254 bytes)观察大部分task的数据本地化级别 如果大多都是PROCESS_LOCAL,那就不用调节了。如果是发现,好多的级别都是NODE_LOCAL、ANY,那么最好就去调节一下数据本地化的等待时长。应该是要反复调节,每次调节完以后,再来运行,观察日志 看看大部分的task的本地化级别有没有提升;看看整个spark作业的运行时间有没有缩短。注意注意:在调节参数、运行任务的时候,别本末倒置,本地化级别倒是提升了, 但是因为大量的等待时长,spark作业的运行时间反而增加了,那就还是不要调节了。
10. 基于Spark内存模型调优
10.1 spark中executor内存划分
Executor的内存主要分为三块
第一块是让task执行我们自己编写的代码时使用;
第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用
第三块是让RDD缓存时使用
10.2 spark的内存模型
在spark1.6版本以前 spark的executor使用的静态内存模型,但是在spark1.6开始,多增加了一个统一内存模型。 通过spark.memory.useLegacyMode 这个参数去配置 默认这个值是false,代表用的是新的动态内存模型; 如果想用以前的静态内存模型,那么就要把这个值改为true。
10.2.1 静态内存模型
实际上就是把我们的一个executor分成了三部分, 一部分是Storage内存区域, 一部分是execution区域, 还有一部分是其他区域。如果使用的静态内存模型,那么用这几个参数去控制: spark.storage.memoryFraction:默认0.6spark.shuffle.memoryFraction:默认0.2 所以第三部分就是0.2如果我们cache数据量比较大,或者是我们的广播变量比较大, 那我们就把spark.storage.memoryFraction这个值调大一点。 但是如果我们代码里面没有广播变量,也没有cache,shuffle又比较多,那我们要把spark.shuffle.memoryFraction 这值调大。
静态内存模型的缺点
我们配置好了Storage内存区域和execution区域后,我们的一个任务假设execution内存不够用了,但是它的Storage内存区域是空闲的,两个之间不能互相借用,不够灵活,所以才出来我们新的统一内存模型。
10.2.2 统一内存模型
动态内存模型先是预留了300m内存,防止内存溢出。动态内存模型把整体内存分成了两部分,由这个参数表示spark.memory.fraction 这个指的默认值是0.6 代表另外的一部分是0.4,然后spark.memory.fraction 这部分又划分成为两个小部分。这两小部分共占整体内存的0.6 .这两部分其实就是:Storage内存和execution内存。由spark.memory.storageFraction 这个参数去调配,因为两个共占0.6。如果spark.memory.storageFraction这个值配的是0.5,那说明这0.6里面 storage占了0.5,也就是executor占了0.3 。
统一内存模型有什么特点呢?
Storage内存和execution内存 可以相互借用。不用像静态内存模型那样死板,但是是有规则的
为什么受伤的都是storage呢?是因为execution里面的数据是马上就要用的,而storage里的数据不一定马上就要用。
10.2.3 任务提交脚本参考
以下是一份spark-submit命令的示例,大家可以参考一下,并根据自己的实际情况进行调节
bin/spark-submit \ --master yarn-cluster \ --num-executors 100 \ --executor-memory 6G \ --executor-cores 4 \ --driver-memory 1G \ --conf spark.default.parallelism=1000 \ --conf spark.storage.memoryFraction=0.5 \ --conf spark.shuffle.memoryFraction=0.3 \
10.2.4 个人经验
java.lang.OutOfMemoryErrorExecutorLostFailureExecutor exit code 为143executor losthearbeat time outshuffle file lost如果遇到以上问题,很有可能就是内存除了问题,可以先尝试增加内存。如果还是解决不了,那么请听下一次数据倾斜调优的课。
关于大数据开发中Spark调优常用手段是什么问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注行业资讯频道了解更多相关知识。
数据
内存
变量
性能
广播
序列
节点
算子
资源
时候
运行
传输
副本
网络
分配
数量
就是
模型
处理
网络传输
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
如何设置vfp数据库独占
软件开发源文档标识
重庆物流软件开发哪家公司好
hw网络安全演习
网络安全公安机关安全职责
奥特曼宇宙英雄服务器问题
电脑怎么登录服务器
上海公司内部培训软件开发
数据库架构师和大数据架构师
专业网络安全准入控制系统
福州网络安全培训课程
仓库软件开发实例
网络安全公司中标
微信小程序实战教程数据库
软件开发演绎法
软件开发需要哪些花销
广州努比互联网科技公司
网络安全和计科哪个考研难
sql 连接服务器
医疗基础数据库
寿宁最新的外贸数据库哪家提供
app软件开发服务费
王者服务器怎么查
小学生网络安全手抄报文案
内存 读写 读取数据库
考克兰数据库怎么用
tsn 控制网络技术特点
fifa22球队数据库
网络安全与可信软件
湖南和顺德软件开发有限公司