千家信息网

从搭建大数据环境到执行WordCount所遇到的坑是怎样的

发表于:2024-11-14 作者:千家信息网编辑
千家信息网最后更新 2024年11月14日,从搭建大数据环境到执行WordCount所遇到的坑是怎样的,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。从搭建大数据环境说起,到执行
千家信息网最后更新 2024年11月14日从搭建大数据环境到执行WordCount所遇到的坑是怎样的

从搭建大数据环境到执行WordCount所遇到的坑是怎样的,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

从搭建大数据环境说起,到执行WordCount所遇到的坑

背景说明

最近(2020年12月20日)在了解大数据相关架构及技术体系。

虽然说只是了解,不需要亲自动手去搭建一个环境并执行相应的job

但是,技术嘛。就是要靠下笨功夫,一点点的积累。该动手的还是不能少。

所以,就从搭环境(基于docker)开始,一直到成功执行了一个基于yarn调度的wordcountjob

期间,遇到了不少坑点,一个一个填好,大概花了10个小时左右的时间。

希望能将这种血泪教训,分享给需要的人。花更少的时间,去完成整个流程。

注意:个人本地环境为macOS Big Sur

基于docker compose的大数据环境搭建

参考 docker-hadoop-spark-hive 快速构建你的大数据环境 搭建了一个大数据环境,调整了部分参数,以适用于mac os

主要是如下五个文件:

.├── copy-jar.sh # spark yarn支持├── docker-compose.yml # docker compose文件├── hadoop-hive.env # 环境变量配置├── run.sh # 启动脚本└── stop.sh # 停止脚本

注意:mac osdocker有一个坑点就是无法直接在宿主机访问容器,我使用Docker for Mac 的网络问题及解决办法(新增方法四)中的方法四解决的。

注意:需要在宿主机配置好相应docker容器对应的ip,这才能保证job成功执行,且各个服务在宿主机访问的时候,跳转不会出现问题。这坑很深,慎踩

# switch_local172.21.0.3 namenode172.21.0.8 resourcemanager172.21.0.9 nodemanager172.21.0.10 historyserver

docker-compose.yml

version: '2' services:  namenode:    image: bde2020/hadoop-namenode:1.1.0-hadoop2.8-java8    container_name: namenode    volumes:      - ~/data/namenode:/hadoop/dfs/name    environment:      - CLUSTER_NAME=test    env_file:      - ./hadoop-hive.env    ports:      - 50070:50070      - 8020:8020  resourcemanager:    image: bde2020/hadoop-resourcemanager:1.1.0-hadoop2.8-java8    container_name: resourcemanager    environment:      - CLUSTER_NAME=test    env_file:      - ./hadoop-hive.env    ports:      - 8088:8088  historyserver:    image: bde2020/hadoop-historyserver:1.1.0-hadoop2.8-java8    container_name: historyserver    environment:      - CLUSTER_NAME=test    env_file:      - ./hadoop-hive.env    ports:      - 8188:8188  datanode:    image: bde2020/hadoop-datanode:1.1.0-hadoop2.8-java8    depends_on:       - namenode    volumes:      - ~/data/datanode:/hadoop/dfs/data    env_file:      - ./hadoop-hive.env    ports:      - 50075:50075  datanode2:    image: bde2020/hadoop-datanode:1.1.0-hadoop2.8-java8    depends_on:       - namenode    volumes:      - ~/data/datanode2:/hadoop/dfs/data    env_file:      - ./hadoop-hive.env    ports:      - 50076:50075  datanode3:    image: bde2020/hadoop-datanode:1.1.0-hadoop2.8-java8    depends_on:       - namenode    volumes:      - ~/data/datanode3:/hadoop/dfs/data    env_file:      - ./hadoop-hive.env    ports:      - 50077:50075  nodemanager:    image: bde2020/hadoop-nodemanager:1.1.0-hadoop2.8-java8    container_name: nodemanager    hostname: nodemanager    environment:      - CLUSTER_NAME=test    env_file:      - ./hadoop-hive.env    ports:      - 8042:8042  hive-server:    image: bde2020/hive:2.1.0-postgresql-metastore    container_name: hive-server    env_file:      - ./hadoop-hive.env    environment:      - "HIVE_CORE_CONF_javax_jdo_option_ConnectionURL=jdbc:postgresql://hive-metastore/metastore"    ports:      - "10000:10000"  hive-metastore:    image: bde2020/hive:2.1.0-postgresql-metastore    container_name: hive-metastore    env_file:      - ./hadoop-hive.env    command: /opt/hive/bin/hive --service metastore    ports:      - 9083:9083  hive-metastore-postgresql:    image: bde2020/hive-metastore-postgresql:2.1.0    ports:      - 5432:5432    volumes:      - ~/data/postgresql/:/var/lib/postgresql/data  spark-master:    image: bde2020/spark-master:2.1.0-hadoop2.8-hive-java8    container_name: spark-master    hostname: spark-master    volumes:      - ./copy-jar.sh:/copy-jar.sh    ports:      - 18080:8080      - 7077:7077    env_file:      - ./hadoop-hive.env  spark-worker:    image: bde2020/spark-worker:2.1.0-hadoop2.8-hive-java8    depends_on:      - spark-master    environment:      - SPARK_MASTER=spark://spark-master:7077    ports:      - "18081:8081"    env_file:      - ./hadoop-hive.env

hadoop-hive.env

HIVE_SITE_CONF_javax_jdo_option_ConnectionURL=jdbc:postgresql://hive-metastore-postgresql/metastoreHIVE_SITE_CONF_javax_jdo_option_ConnectionDriverName=org.postgresql.DriverHIVE_SITE_CONF_javax_jdo_option_ConnectionUserName=hiveHIVE_SITE_CONF_javax_jdo_option_ConnectionPassword=hiveHIVE_SITE_CONF_datanucleus_autoCreateSchema=falseHIVE_SITE_CONF_hive_metastore_uris=thrift://hive-metastore:9083HIVE_SITE_CONF_hive_metastore_warehouse_dir=hdfs://namenode:8020/user/hive/warehouseCORE_CONF_fs_defaultFS=hdfs://namenode:8020CORE_CONF_fs_default_name=hdfs://namenode:8020CORE_CONF_hadoop_http_staticuser_user=rootCORE_CONF_hadoop_proxyuser_hue_hosts=*CORE_CONF_hadoop_proxyuser_hue_groups=*HDFS_CONF_dfs_webhdfs_enabled=trueHDFS_CONF_dfs_permissions_enabled=falseYARN_CONF_yarn_log___aggregation___enable=trueYARN_CONF_yarn_resourcemanager_recovery_enabled=trueYARN_CONF_yarn_resourcemanager_store_class=org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStoreYARN_CONF_yarn_resourcemanager_fs_state___store_uri=/rmstateYARN_CONF_yarn_nodemanager_remote___app___log___dir=/app-logsYARN_CONF_yarn_log_server_url=http://historyserver:8188/applicationhistory/logs/YARN_CONF_yarn_timeline___service_enabled=trueYARN_CONF_yarn_timeline___service_generic___application___history_enabled=trueYARN_CONF_yarn_resourcemanager_system___metrics___publisher_enabled=trueYARN_CONF_yarn_resourcemanager_hostname=resourcemanagerYARN_CONF_yarn_timeline___service_hostname=historyserverYARN_CONF_yarn_resourcemanager_address=resourcemanager:8032YARN_CONF_yarn_resourcemanager_scheduler_address=resourcemanager:8030YARN_CONF_yarn_resourcemanager_resource__tracker_address=resourcemanager:8031YARN_CONF_yarn_resourcemanager_resource__tracker_address=resourcemanager:8031YARN_CONF_yarn_nodemanager_aux___services=mapreduce_shuffle

run.sh

#!/bin/bash# 启动容器docker-compose -f docker-compose.yml up -d namenode hive-metastore-postgresqldocker-compose -f docker-compose.yml up -d datanode datanode2 datanode3 hive-metastoredocker-compose -f docker-compose.yml up -d resourcemanagerdocker-compose -f docker-compose.yml up -d nodemanagerdocker-compose -f docker-compose.yml up -d historyserversleep 5docker-compose -f docker-compose.yml up -d hive-serverdocker-compose -f docker-compose.yml up -d spark-master spark-worker# 获取ip地址并打印到控制台my_ip=`ifconfig | grep 'inet.*netmask.*broadcast' |  awk '{print $2;exit}'`echo "Namenode: http://${my_ip}:50070"echo "Datanode: http://${my_ip}:50075"echo "Spark-master: http://${my_ip}:18080"# 执行脚本,spark yarn支持docker-compose exec spark-master bash -c "./copy-jar.sh && exit"

copy-jar.sh

#!/bin/bashcd /opt/hadoop-2.8.0/share/hadoop/yarn/lib/ && cp jersey-core-1.9.jar jersey-client-1.9.jar /spark/jars/ && rm -rf /spark/jars/jersey-client-2.22.2.jar

stop.sh

#!/bin/bashdocker-compose stop

基于IDEA提交MapReduceyarn

参考列表

  1. IDEA向hadoop集群提交MapReduce作业

  2. java操作hadoop hdfs,实现文件上传下载demo

  3. IDEA远程提交mapreduce任务至linux,遇到ClassNotFoundException: Mapper

注意:在提交至yarn的时候,要将代码打成jar包,否则会报错ClassNotFoundExeption。具体参考《IDEA远程提交mapreduce任务至linux,遇到ClassNotFoundException: Mapper》。

pom.xml

    4.0.0    com.switchvov    hadoop-test    1.0.0    hadoop-test            UTF-8        1.8        1.8                            junit            junit            4.12            test                            org.apache.hadoop            hadoop-client            2.8.0                            org.apache.hadoop            hadoop-common            2.8.0                            org.apache.hadoop            hadoop-hdfs            2.8.0            

log4j.properties

log4j.rootLogger=INFO, consolelog4j.appender.console=org.apache.log4j.ConsoleAppenderlog4j.appender.console.Target=System.outlog4j.appender.console.layout=org.apache.log4j.PatternLayoutlog4j.appender.console.layout.ConversionPattern=[%p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%m%n

words.txt

this is a teststhis is a teststhis is a teststhis is a teststhis is a teststhis is a teststhis is a teststhis is a teststhis is a tests

HdfsDemo.java

package com.switchvov.hadoop.hdfs;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IOUtils;import java.io.InputStream;/** * @author switch * @since 2020/12/18 */public class HdfsDemo {    /**     * hadoop fs的配置文件     */    private static final Configuration CONFIGURATION = new Configuration();    static {        // 指定hadoop fs的地址        CONFIGURATION.set("fs.default.name", "hdfs://namenode:8020");    }    /**     * 将本地文件(filePath)上传到HDFS服务器的指定路径(dst)     */    public static void uploadFileToHDFS(String filePath, String dst) throws Exception {        // 创建一个文件系统        FileSystem fs = FileSystem.get(CONFIGURATION);        Path srcPath = new Path(filePath);        Path dstPath = new Path(dst);        long start = System.currentTimeMillis();        fs.copyFromLocalFile(false, srcPath, dstPath);        System.out.println("Time:" + (System.currentTimeMillis() - start));        System.out.println("________准备上传文件" + CONFIGURATION.get("fs.default.name") + "____________");        fs.close();    }    /**     * 下载文件     */    public static void downLoadFileFromHDFS(String src) throws Exception {        FileSystem fs = FileSystem.get(CONFIGURATION);        Path srcPath = new Path(src);        InputStream in = fs.open(srcPath);        try {            // 将文件COPY到标准输出(即控制台输出)            IOUtils.copyBytes(in, System.out, 4096, false);        } finally {            IOUtils.closeStream(in);            fs.close();        }    }    public static void main(String[] args) throws Exception {        String filename = "words.txt";//        uploadFileToHDFS(//                "/Users/switch/projects/OtherProjects/bigdata-enviroment/hadoop-test/data/" + filename,//                "/share/" + filename//        );        downLoadFileFromHDFS("/share/output12/" + filename + "/part-r-00000");    }}

WordCountRunner.java

package com.switchvov.hadoop.mapreduce.wordcount;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;/** * @author switch * @since 2020/12/17 */public class WordCountRunner {    /**     * LongWritable 行号 类型     * Text 输入的value 类型     * Text 输出的key 类型     * IntWritable 输出的value 类型     *     * @author switch     * @since 2020/12/17     */    public static class WordCountMapper extends Mapper {        /**         * @param key     行号         * @param value   第一行的内容 如  this is a tests         * @param context 输出         * @throws IOException          异常         * @throws InterruptedException 异常         */        @Override        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {            String line = value.toString();            // 以空格分割获取字符串数组            String[] words = line.split(" ");            for (String word : words) {                context.write(new Text(word), new IntWritable(1));            }        }    }    /**     * Text 输入的key的类型     * IntWritable 输入的value的类型     * Text 输出的key类型     * IntWritable 输出的value类型     *     * @author switch     * @since 2020/12/17     */    public static class WordCountReducer extends Reducer {        /**         * @param key     输入map的key         * @param values  输入map的value         * @param context 输出         * @throws IOException          异常         * @throws InterruptedException 异常         */        @Override        protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {            int count = 0;            for (IntWritable value : values) {                count += value.get();            }            context.write(key, new IntWritable(count));        }    }    public static void main(String[] args) throws Exception {        Configuration conf = new Configuration();        // 跨平台,保证在 Windows 下可以提交 mr job        conf.set("mapreduce.app-submission.cross-platform", "true");        // 配置yarn调度        conf.set("mapreduce.framework.name", "yarn");        // 配置resourcemanager的主机名        conf.set("yarn.resourcemanager.hostname", "resourcemanager");        // 配置默认了namenode访问地址        conf.set("fs.defaultFS", "hdfs://namenode:8020");        conf.set("fs.default.name", "hdfs://namenode:8020");        // 配置代码jar包,否则会出现ClassNotFound异常,参考:https://blog.csdn.net/qq_19648191/article/details/56684268        conf.set("mapred.jar", "/Users/switch/projects/OtherProjects/bigdata-enviroment/hadoop-test/out/artifacts/hadoop/hadoop.jar");        // 任务名        Job job = Job.getInstance(conf, "word count");        // 指定Class        job.setJarByClass(WordCountRunner.class);        // 指定 Mapper Class        job.setMapperClass(WordCountMapper.class);        // 指定 Combiner Class,与 reduce 计算逻辑一样        job.setCombinerClass(WordCountReducer.class);        // 指定Reucer Class        job.setReducerClass(WordCountReducer.class);        // 指定输出的KEY的格式        job.setOutputKeyClass(Text.class);        // 指定输出的VALUE的格式        job.setOutputValueClass(IntWritable.class);        //设置Reducer 个数默认1        job.setNumReduceTasks(1);        // Mapper 输出格式必须与继承类的后两个输出类型一致        String filename = "words.txt";        String args0 = "hdfs://namenode:8020/share/" + filename;        String args1 = "hdfs://namenode:8020/share/output12/" + filename;        // 输入路径        FileInputFormat.addInputPath(job, new Path(args0));        // 输出路径        FileOutputFormat.setOutputPath(job, new Path(args1));        System.exit(job.waitForCompletion(true) ? 0 : 1);    }}


关于从搭建大数据环境到执行WordCount所遇到的坑是怎样的问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注行业资讯频道了解更多相关知识。

0