PostgreSQL 源码解读(97)- 查询语句#79(ExecHashJoin函数#5-H...
本节是ExecHashJoin函数介绍的第五部分,主要介绍了ExecHashJoin中依赖的其他函数的实现逻辑,这些函数在HJ_NEED_NEW_BATCH阶段中使用,主要的函数是ExecHashJoinNewBatch。
一、数据结构
JoinState
Hash/NestLoop/Merge Join的基类
/* ---------------- * JoinState information * * Superclass for state nodes of join plans. * Hash/NestLoop/Merge Join的基类 * ---------------- */typedef struct JoinState{ PlanState ps;//基类PlanState JoinType jointype;//连接类型 //在找到一个匹配inner tuple的时候,如需要跳转到下一个outer tuple,则该值为T bool single_match; /* True if we should skip to next outer tuple * after finding one inner match */ //连接条件表达式(除了ps.qual) ExprState *joinqual; /* JOIN quals (in addition to ps.qual) */} JoinState;
HashJoinState
Hash Join运行期状态结构体
/* these structs are defined in executor/hashjoin.h: */typedef struct HashJoinTupleData *HashJoinTuple;typedef struct HashJoinTableData *HashJoinTable;typedef struct HashJoinState{ JoinState js; /* 基类;its first field is NodeTag */ ExprState *hashclauses;//hash连接条件 List *hj_OuterHashKeys; /* 外表条件链表;list of ExprState nodes */ List *hj_InnerHashKeys; /* 内表连接条件;list of ExprState nodes */ List *hj_HashOperators; /* 操作符OIDs链表;list of operator OIDs */ HashJoinTable hj_HashTable;//Hash表 uint32 hj_CurHashValue;//当前的Hash值 int hj_CurBucketNo;//当前的bucket编号 int hj_CurSkewBucketNo;//行倾斜bucket编号 HashJoinTuple hj_CurTuple;//当前元组 TupleTableSlot *hj_OuterTupleSlot;//outer relation slot TupleTableSlot *hj_HashTupleSlot;//Hash tuple slot TupleTableSlot *hj_NullOuterTupleSlot;//用于外连接的outer虚拟slot TupleTableSlot *hj_NullInnerTupleSlot;//用于外连接的inner虚拟slot TupleTableSlot *hj_FirstOuterTupleSlot;// int hj_JoinState;//JoinState状态 bool hj_MatchedOuter;//是否匹配 bool hj_OuterNotEmpty;//outer relation是否为空} HashJoinState;
HashJoinTable
Hash表数据结构
typedef struct HashJoinTableData{ int nbuckets; /* 内存中的hash桶数;# buckets in the in-memory hash table */ int log2_nbuckets; /* 2的对数(nbuckets必须是2的幂);its log2 (nbuckets must be a power of 2) */ int nbuckets_original; /* 首次hash时的桶数;# buckets when starting the first hash */ int nbuckets_optimal; /* 优化后的桶数(每个批次);optimal # buckets (per batch) */ int log2_nbuckets_optimal; /* 2的对数;log2(nbuckets_optimal) */ /* buckets[i] is head of list of tuples in i'th in-memory bucket */ //bucket [i]是内存中第i个桶中的元组链表的head item union { /* unshared array is per-batch storage, as are all the tuples */ //未共享数组是按批处理存储的,所有元组均如此 struct HashJoinTupleData **unshared; /* shared array is per-query DSA area, as are all the tuples */ //共享数组是每个查询的DSA区域,所有元组均如此 dsa_pointer_atomic *shared; } buckets; bool keepNulls; /*如不匹配则存储NULL元组,该值为T;true to store unmatchable NULL tuples */ bool skewEnabled; /*是否使用倾斜优化?;are we using skew optimization? */ HashSkewBucket **skewBucket; /* 倾斜的hash表桶数;hashtable of skew buckets */ int skewBucketLen; /* skewBucket数组大小;size of skewBucket array (a power of 2!) */ int nSkewBuckets; /* 活动的倾斜桶数;number of active skew buckets */ int *skewBucketNums; /* 活动倾斜桶数组索引;array indexes of active skew buckets */ int nbatch; /* 批次数;number of batches */ int curbatch; /* 当前批次,第一轮为0;current batch #; 0 during 1st pass */ int nbatch_original; /* 在开始inner扫描时的批次;nbatch when we started inner scan */ int nbatch_outstart; /* 在开始outer扫描时的批次;nbatch when we started outer scan */ bool growEnabled; /* 关闭nbatch增加的标记;flag to shut off nbatch increases */ double totalTuples; /* 从inner plan获得的元组数;# tuples obtained from inner plan */ double partialTuples; /* 通过hashjoin获得的inner元组数;# tuples obtained from inner plan by me */ double skewTuples; /* 倾斜元组数;# tuples inserted into skew tuples */ /* * These arrays are allocated for the life of the hash join, but only if * nbatch > 1. A file is opened only when we first write a tuple into it * (otherwise its pointer remains NULL). Note that the zero'th array * elements never get used, since we will process rather than dump out any * tuples of batch zero. * 这些数组在散列连接的生命周期内分配,但仅当nbatch > 1时分配。 * 只有当第一次将元组写入文件时,文件才会打开(否则它的指针将保持NULL)。 * 注意,第0个数组元素永远不会被使用,因为批次0的元组永远不会转储. */ BufFile **innerBatchFile; /* 每个批次的inner虚拟临时文件缓存;buffered virtual temp file per batch */ BufFile **outerBatchFile; /* 每个批次的outer虚拟临时文件缓存;buffered virtual temp file per batch */ /* * Info about the datatype-specific hash functions for the datatypes being * hashed. These are arrays of the same length as the number of hash join * clauses (hash keys). * 有关正在散列的数据类型的特定于数据类型的散列函数的信息。 * 这些数组的长度与散列连接子句(散列键)的数量相同。 */ FmgrInfo *outer_hashfunctions; /* outer hash函数FmgrInfo结构体;lookup data for hash functions */ FmgrInfo *inner_hashfunctions; /* inner hash函数FmgrInfo结构体;lookup data for hash functions */ bool *hashStrict; /* 每个hash操作符是严格?is each hash join operator strict? */ Size spaceUsed; /* 元组使用的当前内存空间大小;memory space currently used by tuples */ Size spaceAllowed; /* 空间使用上限;upper limit for space used */ Size spacePeak; /* 峰值的空间使用;peak space used */ Size spaceUsedSkew; /* 倾斜哈希表的当前空间使用情况;skew hash table's current space usage */ Size spaceAllowedSkew; /* 倾斜哈希表的使用上限;upper limit for skew hashtable */ MemoryContext hashCxt; /* 整个散列连接存储的上下文;context for whole-hash-join storage */ MemoryContext batchCxt; /* 该批次存储的上下文;context for this-batch-only storage */ /* used for dense allocation of tuples (into linked chunks) */ //用于密集分配元组(到链接块中) HashMemoryChunk chunks; /* 整个批次使用一个链表;one list for the whole batch */ /* Shared and private state for Parallel Hash. */ //并行hash使用的共享和私有状态 HashMemoryChunk current_chunk; /* 后台进程的当前chunk;this backend's current chunk */ dsa_area *area; /* 用于分配内存的DSA区域;DSA area to allocate memory from */ ParallelHashJoinState *parallel_state;//并行执行状态 ParallelHashJoinBatchAccessor *batches;//并行访问器 dsa_pointer current_chunk_shared;//当前chunk的开始指针} HashJoinTableData;typedef struct HashJoinTableData *HashJoinTable;
HashJoinTupleData
Hash连接元组数据
/* ---------------------------------------------------------------- * hash-join hash table structures * * Each active hashjoin has a HashJoinTable control block, which is * palloc'd in the executor's per-query context. All other storage needed * for the hashjoin is kept in private memory contexts, two for each hashjoin. * This makes it easy and fast to release the storage when we don't need it * anymore. (Exception: data associated with the temp files lives in the * per-query context too, since we always call buffile.c in that context.) * 每个活动的hashjoin都有一个可散列的控制块,它在执行程序的每个查询上下文中都是通过palloc分配的。 * hashjoin所需的所有其他存储都保存在私有内存上下文中,每个hashjoin有两个。 * 当不再需要它的时候,这使得释放它变得简单和快速。 * (例外:与临时文件相关的数据也存在于每个查询上下文中,因为在这种情况下总是调用buffile.c。) * * The hashtable contexts are made children of the per-query context, ensuring * that they will be discarded at end of statement even if the join is * aborted early by an error. (Likewise, any temporary files we make will * be cleaned up by the virtual file manager in event of an error.) * hashtable上下文是每个查询上下文的子上下文,确保在语句结束时丢弃它们,即使连接因错误而提前中止。 * (同样,如果出现错误,虚拟文件管理器将清理创建的任何临时文件。) * * Storage that should live through the entire join is allocated from the * "hashCxt", while storage that is only wanted for the current batch is * allocated in the "batchCxt". By resetting the batchCxt at the end of * each batch, we free all the per-batch storage reliably and without tedium. * 通过整个连接的存储空间应从"hashCxt"分配,而只需要当前批处理的存储空间在"batchCxt"中分配。 * 通过在每个批处理结束时重置batchCxt,可以可靠地释放每个批处理的所有存储,而不会感到单调乏味。 * * During first scan of inner relation, we get its tuples from executor. * If nbatch > 1 then tuples that don't belong in first batch get saved * into inner-batch temp files. The same statements apply for the * first scan of the outer relation, except we write tuples to outer-batch * temp files. After finishing the first scan, we do the following for * each remaining batch: * 1. Read tuples from inner batch file, load into hash buckets. * 2. Read tuples from outer batch file, match to hash buckets and output. * 在内部关系的第一次扫描中,从执行者那里得到了它的元组。 * 如果nbatch > 1,那么不属于第一批的元组将保存到批内临时文件中。 * 相同的语句适用于外关系的第一次扫描,但是我们将元组写入外部批处理临时文件。 * 完成第一次扫描后,我们对每批剩余的元组做如下处理: * 1.从内部批处理文件读取元组,加载到散列桶中。 * 2.从外部批处理文件读取元组,匹配哈希桶和输出。 * * It is possible to increase nbatch on the fly if the in-memory hash table * gets too big. The hash-value-to-batch computation is arranged so that this * can only cause a tuple to go into a later batch than previously thought, * never into an earlier batch. When we increase nbatch, we rescan the hash * table and dump out any tuples that are now of a later batch to the correct * inner batch file. Subsequently, while reading either inner or outer batch * files, we might find tuples that no longer belong to the current batch; * if so, we just dump them out to the correct batch file. * 如果内存中的哈希表太大,可以动态增加nbatch。 * 散列值到批处理的计算是这样安排的: * 这只会导致元组进入比以前认为的更晚的批处理,而不会进入更早的批处理。 * 当增加nbatch时,重新扫描哈希表,并将现在属于后面批处理的任何元组转储到正确的内部批处理文件。 * 随后,在读取内部或外部批处理文件时,可能会发现不再属于当前批处理的元组; * 如果是这样,只需将它们转储到正确的批处理文件即可。 * ---------------------------------------------------------------- *//* these are in nodes/execnodes.h: *//* typedef struct HashJoinTupleData *HashJoinTuple; *//* typedef struct HashJoinTableData *HashJoinTable; */typedef struct HashJoinTupleData{ /* link to next tuple in same bucket */ //link同一个桶中的下一个元组 union { struct HashJoinTupleData *unshared; dsa_pointer shared; } next; uint32 hashvalue; /* 元组的hash值;tuple's hash code */ /* Tuple data, in MinimalTuple format, follows on a MAXALIGN boundary */} HashJoinTupleData;#define HJTUPLE_OVERHEAD MAXALIGN(sizeof(HashJoinTupleData))#define HJTUPLE_MINTUPLE(hjtup) \ ((MinimalTuple) ((char *) (hjtup) + HJTUPLE_OVERHEAD))
二、源码解读
ExecHashJoinNewBatch
切换到新的hashjoin批次,如成功,则返回T;已完成,返回F
/*---------------------------------------------------------------------------------------------------- HJ_FILL_OUTER_TUPLE 阶段----------------------------------------------------------------------------------------------------*///参见ExecHashJoin/*---------------------------------------------------------------------------------------------------- HJ_FILL_INNER_TUPLES 阶段----------------------------------------------------------------------------------------------------*///参见ExecHashJoin/*---------------------------------------------------------------------------------------------------- HJ_NEED_NEW_BATCH 阶段----------------------------------------------------------------------------------------------------*//* * ExecHashJoinNewBatch * switch to a new hashjoin batch * 切换到新的hashjoin批次 * * Returns true if successful, false if there are no more batches. * 如成功,则返回T;已完成,返回F */static boolExecHashJoinNewBatch(HashJoinState *hjstate){ HashJoinTable hashtable = hjstate->hj_HashTable;//Hash表 int nbatch;//批次数 int curbatch;//当前批次 BufFile *innerFile;//inner relation缓存文件 TupleTableSlot *slot;//slot uint32 hashvalue;//hash值 nbatch = hashtable->nbatch; curbatch = hashtable->curbatch; if (curbatch > 0) { /* * We no longer need the previous outer batch file; close it right * away to free disk space. * 不再需要以前的外批处理文件;关闭它以释放磁盘空间。 */ if (hashtable->outerBatchFile[curbatch]) BufFileClose(hashtable->outerBatchFile[curbatch]); hashtable->outerBatchFile[curbatch] = NULL; } else /* curbatch ==0,刚刚完成了第一个批次;we just finished the first batch */ { /* * Reset some of the skew optimization state variables, since we no * longer need to consider skew tuples after the first batch. The * memory context reset we are about to do will release the skew * hashtable itself. * 重置一些倾斜优化状态变量,因为在第一批之后我们不再需要考虑倾斜元组。 * 我们将要进行的内存上下文重置将释放倾斜散链表本身。 */ hashtable->skewEnabled = false; hashtable->skewBucket = NULL; hashtable->skewBucketNums = NULL; hashtable->nSkewBuckets = 0; hashtable->spaceUsedSkew = 0; } /* * We can always skip over any batches that are completely empty on both * sides. We can sometimes skip over batches that are empty on only one * side, but there are exceptions: * 可以跳过任何两边都是空的批次。有时我们可以跳过只在一侧为空的批处理,但也有例外: * * 1. In a left/full outer join, we have to process outer batches even if * the inner batch is empty. Similarly, in a right/full outer join, we * have to process inner batches even if the outer batch is empty. * 1、在左/全外连接中,即使内部批是空的,我们也必须处理外批数据。 * 类似地,在右/完整外部连接中,即使外批数据为空,也必须处理内批数据。 * * 2. If we have increased nbatch since the initial estimate, we have to * scan inner batches since they might contain tuples that need to be * reassigned to later inner batches. * 2、如果在初始估算之后增加了nbatch,必须扫描内部批处理, * 因为它们可能包含需要重新分配到后面的内部批处理的元组。 * * 3. Similarly, if we have increased nbatch since starting the outer * scan, we have to rescan outer batches in case they contain tuples that * need to be reassigned. * 3、类似地,如果在开始外部扫描之后增加了nbatch,必须重新扫描外部批处理, * 以防它们包含需要重新分配的元组。 */ curbatch++; while (curbatch < nbatch && (hashtable->outerBatchFile[curbatch] == NULL || hashtable->innerBatchFile[curbatch] == NULL)) { if (hashtable->outerBatchFile[curbatch] && HJ_FILL_OUTER(hjstate)) break; /* 符合规则1,需要处理;must process due to rule 1 */ if (hashtable->innerBatchFile[curbatch] && HJ_FILL_INNER(hjstate)) break; /* 符合规则1,需要处理;must process due to rule 1 */ if (hashtable->innerBatchFile[curbatch] && nbatch != hashtable->nbatch_original) break; /* 符合规则2,需要处理;must process due to rule 2 */ if (hashtable->outerBatchFile[curbatch] && nbatch != hashtable->nbatch_outstart) break; /* 符合规则3,需要处理;must process due to rule 3 */ /* We can ignore this batch. */ /* Release associated temp files right away. */ //均不符合规则1-3,则可以忽略这个批次了 //释放临时文件 if (hashtable->innerBatchFile[curbatch]) BufFileClose(hashtable->innerBatchFile[curbatch]); hashtable->innerBatchFile[curbatch] = NULL; if (hashtable->outerBatchFile[curbatch]) BufFileClose(hashtable->outerBatchFile[curbatch]); hashtable->outerBatchFile[curbatch] = NULL; curbatch++;//下一个批次 } if (curbatch >= nbatch) return false; /* 已完成处理所有批次;no more batches */ hashtable->curbatch = curbatch;//下一个批次 /* * Reload the hash table with the new inner batch (which could be empty) * 使用新的内部批处理数据(有可能是空的)重新加载哈希表 */ ExecHashTableReset(hashtable);//重置Hash表 //inner relation文件 innerFile = hashtable->innerBatchFile[curbatch]; //批次文件不为NULL if (innerFile != NULL) { if (BufFileSeek(innerFile, 0, 0L, SEEK_SET))//扫描innerFile,不成功,则报错 ereport(ERROR, (errcode_for_file_access(), errmsg("could not rewind hash-join temporary file: %m"))); while ((slot = ExecHashJoinGetSavedTuple(hjstate, innerFile, &hashvalue, hjstate->hj_HashTupleSlot)))// { /* * NOTE: some tuples may be sent to future batches. Also, it is * possible for hashtable->nbatch to be increased here! * 注意:一些元组可能被发送到未来的批次中。 * 另外,这里也可以增加hashtable->nbatch ! */ ExecHashTableInsert(hashtable, slot, hashvalue); } /* * after we build the hash table, the inner batch file is no longer * needed * 构建哈希表之后,内部批处理临时文件就不再需要了,关闭之 */ BufFileClose(innerFile); hashtable->innerBatchFile[curbatch] = NULL; } /* * Rewind outer batch file (if present), so that we can start reading it. */ if (hashtable->outerBatchFile[curbatch] != NULL) { if (BufFileSeek(hashtable->outerBatchFile[curbatch], 0, 0L, SEEK_SET)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not rewind hash-join temporary file: %m"))); } return true;}/* * ExecHashJoinGetSavedTuple * read the next tuple from a batch file. Return NULL if no more. * 从批次文件中读取下一个元组,如无则返回NULL * * On success, *hashvalue is set to the tuple's hash value, and the tuple * itself is stored in the given slot. * 如成功,*hashvalue参数设置为元组的Hash值,元组存储在给定的slot中 */static TupleTableSlot *ExecHashJoinGetSavedTuple(HashJoinState *hjstate, BufFile *file, uint32 *hashvalue, TupleTableSlot *tupleSlot){ uint32 header[2]; size_t nread; MinimalTuple tuple; /* * We check for interrupts here because this is typically taken as an * alternative code path to an ExecProcNode() call, which would include * such a check. * 在这里检查中断,因为这通常被作为ExecProcNode()调用的替代代码路径,通常包含这样的检查。 */ CHECK_FOR_INTERRUPTS(); /* * Since both the hash value and the MinimalTuple length word are uint32, * we can read them both in one BufFileRead() call without any type * cheating. * 因为哈希值和最小长度字都是uint32,所以可以在一个BufFileRead()调用中读取它们, * 而不需要任何类型的cheating。 */ nread = BufFileRead(file, (void *) header, sizeof(header));//读取文件 if (nread == 0) /* end of file */ { //已读取完毕,返回NULL ExecClearTuple(tupleSlot); return NULL; } if (nread != sizeof(header))//读取的大小不等于header的大小,报错 ereport(ERROR, (errcode_for_file_access(), errmsg("could not read from hash-join temporary file: %m"))); //hash值 *hashvalue = header[0]; //tuple,分配的内存大小为MinimalTuple结构体大小 tuple = (MinimalTuple) palloc(header[1]); //元组大小 tuple->t_len = header[1]; //读取文件 nread = BufFileRead(file, (void *) ((char *) tuple + sizeof(uint32)), header[1] - sizeof(uint32)); //读取有误,报错 if (nread != header[1] - sizeof(uint32)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read from hash-join temporary file: %m"))); //存储到slot中 ExecForceStoreMinimalTuple(tuple, tupleSlot, true); return tupleSlot;//返回slot} /* * ExecHashTableInsert * insert a tuple into the hash table depending on the hash value * it may just go to a temp file for later batches * 根据哈希值向哈希表中插入一个tuple,它可能只是转到一个临时文件中以供以后的批处理 * * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual * tuple; the minimal case in particular is certain to happen while reloading * tuples from batch files. We could save some cycles in the regular-tuple * case by not forcing the slot contents into minimal form; not clear if it's * worth the messiness required. * 注意:传递的TupleTableSlot可能包含一个常规、最小或虚拟元组; * 在从批处理文件中重新加载元组时,肯定会出现最小的情况。 * 如为常规元组,可以通过不强制slot内容变成最小形式来节省一些处理时间; * 但不清楚这样的混乱是否值得。 */voidExecHashTableInsert(HashJoinTable hashtable, TupleTableSlot *slot, uint32 hashvalue){ bool shouldFree;//是否释放资源 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);//获取一个MinimalTuple int bucketno;//桶号 int batchno;//批次号 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);//获取桶号和批次号 /* * decide whether to put the tuple in the hash table or a temp file * 判断是否放到hash表中还是放到临时文件中 */ if (batchno == hashtable->curbatch) { //批次号==hash表的批次号,放到hash表中 /* * put the tuple in hash table * 把元组放到hash表中 */ HashJoinTuple hashTuple;//hash tuple int hashTupleSize;//大小 double ntuples = (hashtable->totalTuples - hashtable->skewTuples);//常规元组数量 /* Create the HashJoinTuple */ //创建HashJoinTuple hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;//大小 hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);//分配存储空间 //hash值 hashTuple->hashvalue = hashvalue; //拷贝数据 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len); /* * We always reset the tuple-matched flag on insertion. This is okay * even when reloading a tuple from a batch file, since the tuple * could not possibly have been matched to an outer tuple before it * went into the batch file. * 我们总是在插入时重置元组匹配的标志。 * 即使在从批处理文件中重新加载元组时,这也是可以的, * 因为在元组进入批处理文件之前,它不可能与外部元组匹配。 */ HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple)); /* Push it onto the front of the bucket's list */ // hashTuple->next.unshared = hashtable->buckets.unshared[bucketno]; hashtable->buckets.unshared[bucketno] = hashTuple; /* * Increase the (optimal) number of buckets if we just exceeded the * NTUP_PER_BUCKET threshold, but only when there's still a single * batch. * 如果刚刚超过了NTUP_PER_BUCKET阈值,但是只有在仍然有单个批处理时, * 才增加桶的(优化后)数量。 */ if (hashtable->nbatch == 1 && ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET)) { //只有1个批次而且元组数大于桶数*每桶的元组数 /* Guard against integer overflow and alloc size overflow */ //确保整数不要溢出 if (hashtable->nbuckets_optimal <= INT_MAX / 2 && hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple)) { hashtable->nbuckets_optimal *= 2; hashtable->log2_nbuckets_optimal += 1; } } /* Account for space used, and back off if we've used too much */ //声明使用的存储空间,如果使用太多,需要回退 hashtable->spaceUsed += hashTupleSize; if (hashtable->spaceUsed > hashtable->spacePeak) hashtable->spacePeak = hashtable->spaceUsed;//超出峰值,则跳转 if (hashtable->spaceUsed + hashtable->nbuckets_optimal * sizeof(HashJoinTuple) > hashtable->spaceAllowed) ExecHashIncreaseNumBatches(hashtable);//超出允许的空间,则增加批次 } else { //不在这个批次中 /* * put the tuple into a temp file for later batches * 放在临时文件中以便后续处理(减少重复扫描) */ Assert(batchno > hashtable->curbatch); ExecHashJoinSaveTuple(tuple, hashvalue, &hashtable->innerBatchFile[batchno]);//存储tuple到临时文件中 } if (shouldFree)//如需要释放空间,则处理之 heap_free_minimal_tuple(tuple);}
三、跟踪分析
设置work_mem为较低的值(1MB),便于手工产生批次
testdb=# set work_mem='1MB';SETtestdb=# show work_mem; work_mem ---------- 1MB(1 row)
测试脚本如下
testdb=# set enable_nestloop=false;SETtestdb=# set enable_mergejoin=false;SETtestdb=# explain verbose select dw.*,grjf.grbh,grjf.xm,grjf.ny,grjf.je testdb-# from t_dwxx dw,lateral (select gr.grbh,gr.xm,jf.ny,jf.je testdb(# from t_grxx gr inner join t_jfxx jf testdb(# on gr.dwbh = dw.dwbh testdb(# and gr.grbh = jf.grbh) grjftestdb-# order by dw.dwbh; QUERY PLAN ----------------------------------------------------------------------------------------------- Sort (cost=14828.83..15078.46 rows=99850 width=47) Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je Sort Key: dw.dwbh -> Hash Join (cost=3176.00..6537.55 rows=99850 width=47) Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je Hash Cond: ((gr.grbh)::text = (jf.grbh)::text) -> Hash Join (cost=289.00..2277.61 rows=99850 width=32) Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm Inner Unique: true Hash Cond: ((gr.dwbh)::text = (dw.dwbh)::text) -> Seq Scan on public.t_grxx gr (cost=0.00..1726.00 rows=100000 width=16) Output: gr.dwbh, gr.grbh, gr.xm, gr.xb, gr.nl -> Hash (cost=164.00..164.00 rows=10000 width=20) Output: dw.dwmc, dw.dwbh, dw.dwdz -> Seq Scan on public.t_dwxx dw (cost=0.00..164.00 rows=10000 width=20) Output: dw.dwmc, dw.dwbh, dw.dwdz -> Hash (cost=1637.00..1637.00 rows=100000 width=20) Output: jf.ny, jf.je, jf.grbh -> Seq Scan on public.t_jfxx jf (cost=0.00..1637.00 rows=100000 width=20) Output: jf.ny, jf.je, jf.grbh(20 rows)
启动gdb,设置断点,进入ExecHashJoinNewBatch
(gdb) b ExecHashJoinNewBatchBreakpoint 1 at 0x7031f5: file nodeHashjoin.c, line 943.(gdb) cContinuing.Breakpoint 1, ExecHashJoinNewBatch (hjstate=0x1c40738) at nodeHashjoin.c:943943 HashJoinTable hashtable = hjstate->hj_HashTable;
获取批次数(8个批次)和当前批次(0,第一个批次)
(gdb) n950 nbatch = hashtable->nbatch;(gdb) 951 curbatch = hashtable->curbatch;(gdb) 953 if (curbatch > 0)(gdb) p nbatch$5 = 8(gdb) p curbatch$6 = 0
curbatch ==0,刚刚完成了第一个批次,重置倾斜优化的相关状态变量
(gdb) n971 hashtable->skewEnabled = false;(gdb) 972 hashtable->skewBucket = NULL;(gdb) 973 hashtable->skewBucketNums = NULL;(gdb) 974 hashtable->nSkewBuckets = 0;(gdb) 975 hashtable->spaceUsedSkew = 0;(gdb) 995 curbatch++;
外表为空或内表为空时的优化,本次调用均不为空
(gdb) n996 while (curbatch < nbatch &&(gdb) 997 (hashtable->outerBatchFile[curbatch] == NULL ||(gdb) p hashtable->outerBatchFile[curbatch]$7 = (BufFile *) 0x1d85290(gdb) p hashtable->outerBatchFile[curbatch]$8 = (BufFile *) 0x1d85290
设置当前批次,重建Hash表
(gdb) 1023 if (curbatch >= nbatch)(gdb) 1026 hashtable->curbatch = curbatch;(gdb) 1031 ExecHashTableReset(hashtable);
获取inner relation批次临时文件
(gdb) 1033 innerFile = hashtable->innerBatchFile[curbatch];(gdb) 1035 if (innerFile != NULL)(gdb) p innerFile$9 = (BufFile *) 0x1cc0540
临时文件不为NULL,读取文件
(gdb) n1037 if (BufFileSeek(innerFile, 0, 0L, SEEK_SET))(gdb) 1042 while ((slot = ExecHashJoinGetSavedTuple(hjstate,
进入函数ExecHashJoinGetSavedTuple
(gdb) stepExecHashJoinGetSavedTuple (hjstate=0x1c40fd8, file=0x1cc0540, hashvalue=0x7ffeace60824, tupleSlot=0x1c4cc20) at nodeHashjoin.c:12591259 CHECK_FOR_INTERRUPTS();(gdb)
ExecHashJoinGetSavedTuple->读取头部8个字节(header,类型为void *,在64 bit的机器上,大小8个字节)
gdb) n1266 nread = BufFileRead(file, (void *) header, sizeof(header));(gdb) 1267 if (nread == 0) /* end of file */(gdb) p nread$10 = 8(gdb) n1272 if (nread != sizeof(header))(gdb)
ExecHashJoinGetSavedTuple->获取Hash值(1978434688)
(gdb) 1276 *hashvalue = header[0];(gdb) n1277 tuple = (MinimalTuple) palloc(header[1]);(gdb) p *hashvalue$11 = 1978434688
ExecHashJoinGetSavedTuple->获取tuple&元组长度
(gdb) n1278 tuple->t_len = header[1];(gdb) 1281 header[1] - sizeof(uint32));(gdb) p tuple->t_len$16 = 24(gdb) p *tuple$17 = {t_len = 24, mt_padding = "\177\177\177\177\177\177", t_infomask2 = 32639, t_infomask = 32639, t_hoff = 127 '\177', t_bits = 0x1c5202f "\177\177\177\177\177\177\177\177\177~\177\177\177\177\177\177\177"}(gdb)
ExecHashJoinGetSavedTuple->根据大小读取文件获取元组
(gdb) n1279 nread = BufFileRead(file,(gdb) 1282 if (nread != header[1] - sizeof(uint32))(gdb) p header[1]$18 = 24(gdb) p sizeof(uint32)$19 = 4(gdb) p *tuple$20 = {t_len = 24, mt_padding = "\000\000\000\000\000", t_infomask2 = 3, t_infomask = 2, t_hoff = 24 '\030', t_bits = 0x1c5202f ""}
ExecHashJoinGetSavedTuple->存储到slot中,完成调用
(gdb) n1286 return ExecStoreMinimalTuple(tuple, tupleSlot, true);(gdb) 1287 }(gdb) ExecHashJoinNewBatch (hjstate=0x1c40fd8) at nodeHashjoin.c:10511051 ExecHashTableInsert(hashtable, slot, hashvalue);
插入到Hash表中
(gdb) 1051 ExecHashTableInsert(hashtable, slot, hashvalue);
进入ExecHashTableInsert
(gdb) stepExecHashTableInsert (hashtable=0x1c6e1c0, slot=0x1c4cc20, hashvalue=3757101760) at nodeHash.c:15931593 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot);(gdb)
ExecHashTableInsert->获取批次号和hash桶号
(gdb) n1597 ExecHashGetBucketAndBatch(hashtable, hashvalue,(gdb) 1603 if (batchno == hashtable->curbatch)(gdb) p batchno$21 = 1(gdb) p bucketno$22 = 21184(gdb) (gdb) p hashtable->curbatch$23 = 1
ExecHashTableInsert->批次号与Hash表中的批次号一致,把元组放到Hash表中
常规元组数量=100000
(gdb) n1610 double ntuples = (hashtable->totalTuples - hashtable->skewTuples);(gdb) n1613 hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;(gdb) p ntuples$24 = 100000
ExecHashTableInsert->创建HashJoinTuple,重置元组匹配标记
(gdb) n1614 hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);(gdb) 1616 hashTuple->hashvalue = hashvalue;(gdb) 1617 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);(gdb) 1625 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));(gdb)
ExecHashTableInsert->元组放在Hash表桶链表的前面
(gdb) n1628 hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];(gdb) 1629 hashtable->buckets.unshared[bucketno] = hashTuple;(gdb) 1636 if (hashtable->nbatch == 1 &&(gdb)
ExecHashTableInsert->调整或记录Hash表内存使用的峰值并返回,回到ExecHashJoinNewBatch
(gdb) 1649 hashtable->spaceUsed += hashTupleSize;(gdb) ...(gdb) 1667 }(gdb) nExecHashJoinNewBatch (hjstate=0x1c40fd8) at nodeHashjoin.c:10421042 while ((slot = ExecHashJoinGetSavedTuple(hjstate,
循环插入到Hash表中
1042 while ((slot = ExecHashJoinGetSavedTuple(hjstate,(gdb) n1051 ExecHashTableInsert(hashtable, slot, hashvalue);...
DONE!
四、参考资料
Hash Joins: Past, Present and Future/PGCon 2017
A Look at How Postgres Executes a Tiny Join - Part 1
A Look at How Postgres Executes a Tiny Join - Part 2
Assignment 2 Symmetric Hash Join