使用K近邻算法与CSS动态字体加密后Python怎么反爬虫
本篇内容主要讲解"使用K近邻算法与CSS动态字体加密后Python怎么反爬虫",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"使用K近邻算法与CSS动态字体加密后Python怎么反爬虫"吧!
1.字体反爬
字体反爬也就是自定义字体加密映射,通过调用自定义的字体文件来渲染网页中的文字,而网页中的文字不再是文字,而是相应的字体编码,通过复制或者简单的采集是无法采集到编码后的文字内容的。
2.查看字体软件font creator 可下载,也可不下载,借助网页版工具
3.CSS处理前后的字体
我们看到的网页上的数据是正常的
但是当我们打开开发者工具检查字体时 ,金额和票房数据却变成了类似乱码的字符
我们再检查网页源码,发现数据和上面的都不一样,而且每次请求金额还被加密成不同的密文
多次请求,发现返回的字体文件重复概率太低(仔细观察是有的,就是少)
4.解决思路
了解CSS 的应该会知道(我不知道),CSS 中有一个 @font-face,它允许网页开发者为其网页指定在线字体。原本是用来消除对用户电脑字体的依赖,现在有了新作用--字体反爬。CN/docs/Web/CSS/@font-face 再观察源码中的数据,像是编码过后的数据。
仔细观察发现是一些特定span中的数据经过处理,如下图
所以我们就查找该class名,找到了其字体样式
其中的woff就是字体文件,还有其他的,比如ttf字体,woff2,svg等,这里仅有woff ,可在font栏查看
将该字体下载过来,在json字体编辑器中打开,https://font.qqe2.com/,可看到字体,多次刷新的话同样的数字还不一样
我们再次拿处理前后的部分数字拿来进行对比:
最初数字 2 4 0 1 . 3
加密后 .
字体中 $E290 $ED17 $F1A7 $EFBD $EFBD
uniE290 uniED17 uniF1A7 uniEFBD uniEFBD
发现规律了吧,但是我们知道每次数字位置都是动态...
5.用TTfont把woff文件转化成xml文件
先将字体转化成xml文件。
import requests
from fontTools.ttLib import TTFont
def woff_xml():
url = "https://vfile.meituan.net/colorstone/167b59ea53b59e17be72018703b759c32284.woff"
woff_dir = r"./colorstone/"
file_name = url.split("/")[-1]
xml_name = file_name.replace(file_name.split(".")[-1], "xml")
save_woff = file_name
save_xml = xml_name
resp = requests.get(url=url)
with open(woff_dir+save_woff, "wb") as f:
f.write(resp.content)
f.close()
font = TTFont(woff_dir+save_woff)
font.saveXML(woff_dir+save_xml)
转换成的数据如图:
仔细查看后,确定和我们字体相关的标签: 和 ,其中标签中的数据在上图,我们对进行查看:
其中有x,y,Xmin,Ymin,Xmax,Ymax等值,很明显是一些坐标点的信息,其实他就是确定字体形状的坐标,不信我们可以画一下:郑州人流医院 http://www.120zzzzyy.com/
import matplotlib.pyplot as plt
import re
str = """"
相应内容复制上来
"""
x = [int(i) for i in re.findall(r'
获取10套基准字体,最初是存到XML中的,后面发现没必要
:return: None
'''
for i in range(0,10):#获取10套字体作为基准字体
time.sleep(1)
res = requests.get(url=self.start_url,headers=self.headers,proxies=self.proxies)
res.encoding = "utf-8"
part_font_url = re.findall(r"url\('(.{,100}?\.woff)",res.text,re.S)
#请求一次获得部分url
if part_font_url:
font_url = "https:" + part_font_url[0]
file_name = str(i+1)+".woff" #字体文件1.woff
save_woff = file_name
resp = requests.get(url=font_url,proxies=self.proxies)
try:
with open(r"./colorstone/" + save_woff, "wb") as f:#将woff文件保存
f.write(resp.content)
f.close()
# font = TTFont(r"./colorstone/" + save_woff)
# font.saveXML(r"./colorstone/base" + str(i+1)+ ".xml") #保存为base1.xml这样的文件名
print("第{}套基准字体保存完毕!".format((i+1)))
except Exception as e:
print(e)
else:
print("第{}次请求失败,请检查网站是否禁止访问等".format((i+1)))
6.2.提取样本字体中的数字 + 坐标:
def base_font(self):
'''
获取10套基准字体中数字对应的x,y值
:return: None
'''
# 查看10套基准字体, 获取数字顺序
# base_num1 = [3,8,9,2,0,1,7,5,4,6]
# base_num2 = [3,6,5,2,4,8,9,1,7,0]
# base_num3 = [6,0,4,8,1,9,5,2,3,7]
# base_num4 = [1,8,2,5,7,9,4,6,3,0]
# base_num5 = [0,9,8,6,1,4,7,3,2,5]
# base_num6 = [9,7,5,8,3,4,6,1,2,0]
# base_num7 = [6,5,9,4,0,2,8,3,1,7]
# base_num8 = [6,5,1,0,4,7,8,2,9,3]
# base_num9 = [0,6,9,5,3,8,4,1,2,7]
# base_num10 = [0,6,2,8,5,9,5,3,1,7]
base_num = [[3,8,9,2,0,1,7,5,4,6],[3,6,5,2,4,8,9,1,7,0],[6,0,4,8,1,9,5,2,3,7],[1,8,2,5,7,9,4,6,3,0],
[0,9,8,6,1,4,7,3,2,5],[9,7,5,8,3,4,6,1,2,0],[6,5,9,4,0,2,8,3,1,7],[6,5,1,0,4,7,8,2,9,3],
[0,6,9,5,3,8,4,1,2,7],[0,6,2,8,5,9,5,3,1,7]]
num_coordinate = []
for i in range(0,10):
woff_path = "./colorstone/"+str(i+1)+".woff"
font = TTFont(woff_path)
obj1 = font.getGlyphOrder()[2:] #过滤到前两个不需要的
for j, g in enumerate(obj1):
coors = font['glyf'][g].coordinates
coors = [_ for c in coors for _ in c]
coors.insert(0, base_num[i][j])
num_coordinate.append(coors)
return num_coordinate
6.3. 在函数knn(self)中:
6.3.1 获取特征值,目标值
num_coordinate = self.base_font()
data = pd.DataFrame(num_coordinate)
data = data.fillna(value=0)
x = data.drop([0],axis=1)
y = data[0]
6.3.2 进行数据的分割:训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
6.3.3 调用KNN算法(这里n的参数由网格验证得出,最优参数为1):
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(x_train, y_train)
6.4.建立映射,将数字和对应的编码建成字典形式:
def get_map(self):
font = TTFont("./colorstone/target.woff")
glyf_order = font.getGlyphOrder()[2:]
info = []
for g in glyf_order:
coors = font['glyf'][g].coordinates
coors = [_ for c in coors for _ in c]
info.append(coors)
print(info)
knn,length = self.knn()
df = pd.DataFrame(info)
data = pd.concat([df, pd.DataFrame(np.zeros(
(df.shape[0], length - df.shape[1])), columns=range(df.shape[1], length))])
data = data.fillna(value=0)
y_predict = knn.predict(data)
num_uni_dict = {}
for i, uni in enumerate(glyf_order):
num_uni_dict[uni.lower().replace('uni', '') + ';'] = str(y_predict[i])
return num_uni_dict
6.5.采集数据并替换,获取正确数据:
根据网页结构,提取数据:
def get_info(self):
res = requests.get(url=self.start_url, headers=self.headers)
res.encoding = "utf-8"
part_font_url = re.findall(r"url\('(.{,100}?\.woff)", res.text, re.S)
# 请求一次获得部分url
if part_font_url:
font_url = "https:" + part_font_url[0]
resp = requests.get(url=font_url,proxies=self.proxies)
with open(r"./colorstone/target.woff", "wb") as f: # 保存需要分析的字体文件
f.write(resp.content)
f.close()
html = res.text
map_dict = self.get_map()
for uni in map_dict.keys():
html = html.replace(uni, map_dict[uni])
parse_html = etree.HTML(html)
for i in range(0,11):
name = parse_html.xpath('//dd[{}]//p[@class="name"]/a/@title'.format(i))
star = parse_html.xpath('//dd[{}]//p[@class="star"]/text()'.format(i))
releasetime = parse_html.xpath('//dd[{}]//p[@class="releasetime"]/text()'.format(i))
realtime_amount= parse_html.xpath('//dd[{}]//p[@class="realtime"]//text()'.format(i))
total_amount = parse_html.xpath('//dd[{}]//p[@class="total-boxoffice"]//text()'.format(i))
print("".join(name)," ","".join(star)," ","".join(releasetime),"".join(realtime_amount).replace(" ","").replace("\n",""),"".join(total_amount).replace(" ",""))
打印结果
对比原网页
数据完全是一样的,此次动态字体反爬到此就结束了。
到此,相信大家对"使用K近邻算法与CSS动态字体加密后Python怎么反爬虫"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!