千家信息网

SparkSQL 初步应用

发表于:2025-02-01 作者:千家信息网编辑
千家信息网最后更新 2025年02月01日,最近项目中使用SparkSQL来做数据的统计分析,闲来就记录下来。直接上代码:import org.apache.spark.SparkContextimport org.apache.spark.s
千家信息网最后更新 2025年02月01日SparkSQL 初步应用
最近项目中使用SparkSQL来做数据的统计分析,闲来就记录下来。直接上代码:import org.apache.spark.SparkContextimport org.apache.spark.sql.SQLContextobject SparkSQL {  //定义两个case class A和B:  //    A是用户的基本信息:包括客户号、***号和性别  //    B是用户的交易信息:包括客户号、消费金额和消费状态  case class A(custom_id:String,id_code:String,sex:String)  case class B(custom_id:String,money:String,status:Int)    def main(args:Array[String]): Unit = {    //数据量不大时,测试发现使用local[*]的效率要比local和基于YARN的效率都高。    //这里使用local[*]模式,设置AppName为"SparkSQL"    val sc = new SparkContext("local[*]", "SparkSQL")    val sqlContext = new SQLContext(sc)    import sqlContext.createSchemaRDD        //定义两个RDD:A_RDD和B_RDD。数据之间以char(1)char(1)分隔,取出对应的客户信息。    val A_RDD = sc.textFile("hdfs://172.16.30.2:25000/usr/tmpdata/A.dat").map(_.split("\u0001\u0001")).map(t => tbclient(t(0), t(4), t(13)))    val B_RDD = sc.textFile("hdfs://172.16.30.3:25000/usr/tmpdata/B.dat").map(_.split("\u0001\u0001")).map(t=>tbtrans(t(16),t(33),t(71).toInt))        //将普通RDD转为SchemaRDD    A_RDD.registerTempTable("A_RDD")    B_RDD.registerTempTable("B_RDD")         def toInt(s: String): Int = {      try {        s.toInt      } catch {        case e: Exception => 9999      }    }    def myfun2(id_code:String):Int = {      val i = id_code.length      i    }    //定义函数:根据***号判断属相    //这里注意Scala的substring方法的使用,和Java、Oracle等都不同           def myfun5(id_code:String):String = {      var year = ""      if(id_code.length == 18){        val md = toInt(id_code.substring(6,10))        val i = 1900        val years=new Array[String](12)        years(0) = "鼠"        years(1) = "牛"        years(2) = "虎"        years(3) = "兔"        years(4) = "龙"        years(5) = "蛇"        years(6) = "马"        years(7) = "羊"        years(8) = "猴"        years(9) = "鸡"        years(10) = "狗"        years(11) = "猪"        year = years((md-i)%years.length)      }      year    }    //设置年龄段        def myfun3(id_code:String):String = {      var rt = ""      if(id_code.length == 18){        val age = toInt(id_code.substring(6,10))        if(age >= 1910 && age < 1920){          rt = "1910 ~ 1920"        }        else if(age >= 1920 && age < 1930){          rt = "1920 ~ 1930"        }        else if(age >= 1930 && age < 1940){          rt = "1930 ~ 1940"        }        else if(age >= 1940 && age < 1950){          rt = "1940 ~ 1950"        }        else if(age >= 1950 && age < 1960){          rt = "1950 ~ 1960"        }        else if(age >= 1960 && age <1970){          rt = "1960 ~ 1970"        }        else if(age >= 1970 && age <1980){          rt = "1970 ~ 1980"        }        else if(age >= 1980 && age <1990){          rt = "1980 ~ 1990"        }        else if(age >= 1990 && age <2000){          rt = "1990 ~ 2000"        }        else if(age >= 2000 && age <2010){          rt = "2000 ~ 2010"        }        else if(age >= 2010 && age<2014){          rt = "2010以后"        }      }      rt    }    //划分消费金额区间        def myfun4(money:String):String = {      var rt = ""      if(money>="10000" && money<"50000"){        rt = "10000 ~ 50000"      }      else if(money>="50000" && money<"60000"){        rt = "50000 ~ 60000"      }      else if(money>="60000" && money<"70000"){        rt = "60000 ~ 70000"      }      else if(money>="70000" && money<"80000"){        rt = "70000 ~ 80000"      }      else if(money>="80000" && money<"100000"){        rt = "80000 ~ 100000"      }      else if(money>="100000" && money<"150000"){        rt = "100000 ~ 150000"      }      else if(money>="150000" && money<"200000"){        rt = "150000 ~ 200000"      }      else if(money>="200000" && money<"1000000"){        rt = "200000 ~ 1000000"      }      else if(money>="1000000" && money<"10000000"){        rt = "1000000 ~ 10000000"      }      else if(money>="10000000" && money<"50000000"){        rt = "10000000 ~ 50000000"      }      else if(money>="5000000" && money<"100000000"){        rt = "5000000 ~ 100000000"      }      rt    }    //根据生日判断星座        def myfun1(id_code:String):String = {      var rt = ""      if(id_code.length == 18){          val md = toInt(id_code.substring(10,14))          if (md >= 120 && md <= 219){            rt = "水瓶座"          }          else if (md >= 220 && md <= 320){            rt = "双鱼座"          }          else if (md >= 321 && md <= 420){            rt = "白羊座"          }          else if (md >= 421 && md <= 521){            rt = "金牛座"          }          else if (md >= 522 && md <= 621){            rt = "双子座"          }          else if (md >= 622 && md <= 722){            rt = "巨蟹座"          }          else if (md >= 723 && md <= 823){            rt = "狮子座"          }          else if (md >= 824 && md <= 923){            rt = "***座"          }          else if (md >= 924 && md <= 1023){            rt = "天秤座"          }          else if (md >= 1024 && md <= 1122){            rt = "天蝎座"          }          else if (md >= 1123 && md <= 1222){            rt = "射手座"          }          else if ((md >= 1223 && md <= 1231) | (md >= 101 && md <= 119)){            rt = "摩蝎座"          }          else            rt = "无效"        }      rt    }    //注册函数    sqlContext.registerFunction("fun1",(x:String)=>myfun1(x))    sqlContext.registerFunction("fun3",(z:String)=>myfun3(z))    sqlContext.registerFunction("fun4",(m:String)=>myfun4(m))    sqlContext.registerFunction("fun5",(n:String)=>myfun5(n))    //星座统计,注意,这里必须要有fun2(id_code)=18这个限制,否则,第一个字段有这个限制,而第二个统计字段值却没有这个限制        val result1 = sqlContext.sql("select fun1(id_code),count(*) from A_RDD t where fun2(id_code)=18 group by fun1(id_code)")        //属相统计    val result2 = sqlContext.sql("select fun5(a.id_code),count(*) from A_RDD a where fun2(id_code)=18 group by fun5(a.id_code)")        //根据消费区间统计消费人数和总金额    val result3 = sqlContext.sql("select fun4(a.money),count(distinct a.custom_id),SUM(a.money) from B_RDD a where a.status=8 and a.custom_id in (select b.custom_id from A_RDD b where fun2(b.id_code)=18) group by fun4(a.money)")        //打印结果    result3.collect().foreach(println)    //也可以将结果保存到OS/HDFS上    result2.saveAsTextFile("file:///tmp/age")  }}




在测试result3的时候,发现报错:



Exception in thread "main" java.lang.RuntimeException: [1.101] failure: ``NOT'' expected but `select' found


select fun5(a.id_code),count(*) from A_RDD a where fun2(a.id_code)=18 and a.custom_id IN (select distinct b.custom_id from B_RDD b where b.status=8) group by fun5


(a.id_code)

^

at scala.sys.package$.error(package.scala:27)

at org.apache.spark.sql.catalyst.SqlParser.apply(SqlParser.scala:60)

at org.apache.spark.sql.SQLContext.parseSql(SQLContext.scala:74)

at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:267)

at SparkSQL$.main(SparkSQL.scala:198)

at SparkSQL.main(SparkSQL.scala)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:606)

at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)



目前还在调试阶段,目测可能SparkSQL对条件中子查询的支持做的不是很好(只是猜测)。

如有问题,还望路过的高手不吝赐教。

0