Python怎么实现对图像添加高斯噪声或椒盐噪声
发表于:2025-01-26 作者:千家信息网编辑
千家信息网最后更新 2025年01月26日,这篇文章主要为大家展示了"Python怎么实现对图像添加高斯噪声或椒盐噪声",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"Python怎么实现对图像添加高斯
千家信息网最后更新 2025年01月26日Python怎么实现对图像添加高斯噪声或椒盐噪声
这篇文章主要为大家展示了"Python怎么实现对图像添加高斯噪声或椒盐噪声",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下"Python怎么实现对图像添加高斯噪声或椒盐噪声"这篇文章吧。
加噪声的代码(高斯噪声,椒盐噪声)
add_noise.py
#代码中的noisef为信号等级,例如我需要0.7的噪声,传入参数我传入的是1-0.7from PIL import Imageimport numpy as npimport randomimport torchvision.transforms as transformsnorm_mean = (0.5, 0.5, 0.5)norm_std = (0.5, 0.5, 0.5)class AddPepperNoise(object): """增加椒盐噪声 Args: snr (float): Signal Noise Rate p (float): 概率值,依概率执行该操作 """ def __init__(self, snr, p=0.9): assert isinstance(snr, float) and (isinstance(p, float)) # 2020 07 26 or --> and self.snr = snr self.p = p def __call__(self, img): """ Args: img (PIL Image): PIL Image Returns: PIL Image: PIL image. """ if random.uniform(0, 1) < self.p: img_ = np.array(img).copy() h, w, c = img_.shape signal_pct = self.snr noise_pct = (1 - self.snr) mask = np.random.choice((0, 1, 2), size=(h, w, 1), p=[signal_pct, noise_pct/2., noise_pct/2.]) mask = np.repeat(mask, c, axis=2) img_[mask == 1] = 255 # 盐噪声 img_[mask == 2] = 0 # 椒噪声 return Image.fromarray(img_.astype('uint8')).convert('RGB') else: return imgclass Gaussian_noise(object): """增加高斯噪声 此函数用将产生的高斯噪声加到图片上 传入: img : 原图 mean : 均值 sigma : 标准差 返回: gaussian_out : 噪声处理后的图片 """ def __init__(self, mean, sigma): self.mean = mean self.sigma = sigma def __call__(self, img): """ Args: img (PIL Image): PIL Image Returns: PIL Image: PIL image. """ # 将图片灰度标准化 img_ = np.array(img).copy() img_ = img_ / 255.0 # 产生高斯 noise noise = np.random.normal(self.mean, self.sigma, img_.shape) # 将噪声和图片叠加 gaussian_out = img_ + noise # 将超过 1 的置 1,低于 0 的置 0 gaussian_out = np.clip(gaussian_out, 0, 1) # 将图片灰度范围的恢复为 0-255 gaussian_out = np.uint8(gaussian_out*255) # 将噪声范围搞为 0-255 # noise = np.uint8(noise*255) return Image.fromarray(gaussian_out).convert('RGB')def image_transform(noisef): """对训练集和测试集的图片作预处理转换 train_transform:加噪图 _train_transform:原图(不加噪) test_transform:测试图(不加噪) """ train_transform = transforms.Compose([ transforms.Resize((256, 256)), # 重设大小 #transforms.RandomCrop(32,padding=4), AddPepperNoise(noisef, p=0.9), #加椒盐噪声 #Gaussian_noise(0, noisef), # 加高斯噪声 transforms.ToTensor(), # 转换为张量 # transforms.Normalize(norm_mean,norm_std), ]) _train_transform = transforms.Compose([ transforms.Resize((256, 256)), #transforms.RandomCrop(32,padding=4), transforms.ToTensor(), # transforms.Normalize(norm_mean,norm_std), ]) test_transform = transforms.Compose([ transforms.Resize((256, 256)), #transforms.RandomCrop(32,padding=4), transforms.ToTensor(), # transforms.Normalize(norm_mean,norm_std), ]) return train_transform, _train_transform, test_transform
在pytorch中如何使用
# 图像变换和加噪声train_transform为加噪图,_train_transform为原图,test_transform为测试图 noisef为传入的噪声等级train_transform,_train_transform,test_transform = image_transform(noisef)training_data=FabricDataset_file(data_dir=train_dir,transform=train_transform)_training_data=FabricDataset_file(data_dir=_train_dir,transform=_train_transform)testing_data=FabricDataset_file(data_dir=test_dir,transform=test_transform)
以上是"Python怎么实现对图像添加高斯噪声或椒盐噪声"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!
噪声
高斯
椒盐
图片
图像
内容
原图
篇文章
测试
代码
标准
概率
灰度
等级
范围
学习
帮助
信号
函数
参数
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
传感器网络技术课程报告
大学生网络安全知识ppt
王者荣耀安卓服务器
大数据网络安全
网络技术就业形势分析
微服务的数据库需要独立吗
软件开发项目预算拆分粒度
上海中兴软件开发待遇怎么样
从哪里看战地是什么服务器
云南网络安全大会直播
云服务器能防止网络掉线吗
车家互联网科技
腾讯自研内核数据库
租gpu服务器
南充市网络安全宣传周
太原网络安全设备
mp4护苗_网络安全课
服务器id灯叹号
数据库迁移视频教程
联想sr588服务器怎么备份
计算机网络技术大专网
数据库基础与应用练习答案
视频协同软件开发
苏州阿里云服务器销量
rfid网络技术层
ps软件开发者是谁
饥荒进档服务器无响应
山西政府软件开发公司
计算机网络技术由什么组成
陕西省科学技术协会专家人才数据库