千家信息网

NanoVG优化方法是什么

发表于:2025-01-31 作者:千家信息网编辑
千家信息网最后更新 2025年01月31日,本篇内容主要讲解"NanoVG优化方法是什么",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"NanoVG优化方法是什么"吧!NanoVG 优化nanovg正
千家信息网最后更新 2025年01月31日NanoVG优化方法是什么

本篇内容主要讲解"NanoVG优化方法是什么",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"NanoVG优化方法是什么"吧!

NanoVG 优化

nanovg正如其名称所示的那样,是一个非常小巧的矢量绘图函数库。相比cairo和skia的数十万行代码,nanovg不足5000行的C语言代码,称为nano也是名副其实了。nanovg的设计、接口和代码质量都堪称典范,唯一美中不足的就是性能不太理想。特别是在Android的低端机型和大屏幕的机型上,一个简单的界面每秒只能画十几帧。最近我把AWTK移植到Android上时,就碰到了这个尴尬的问题。

经过优化之后,AWTK在低端机型上,整体渲染性能有了3到5倍的提升。这里做个笔记,供有需要的朋友参考。

nanovg的性能瓶颈在于片段着色器(fragment shader),片段着色器可以认为是为GPU提供的一个回调函数,该回调函数在处理每个像素时被调用,在每一帧绘制时都会执行数百万次,可见该函数的对性能的影响是很大的。

我们先看看nanovg的片段着色器(fragment shader)代码:

       static const char* fillFragShader =                "#ifdef GL_ES\n"                "#if defined(GL_FRAGMENT_PRECISION_HIGH) || defined(NANOVG_GL3)\n"                " precision highp float;\n"                "#else\n"                " precision mediump float;\n"                "#endif\n"                "#endif\n"                "#ifdef NANOVG_GL3\n"                "#ifdef USE_UNIFORMBUFFER\n"                "  layout(std140) uniform frag {\n"                "          mat3 scissorMat;\n"                "          mat3 paintMat;\n"                "          vec4 innerCol;\n"                "          vec4 outerCol;\n"                "          vec2 scissorExt;\n"                "          vec2 scissorScale;\n"                "          vec2 extent;\n"                "          float radius;\n"                "          float feather;\n"                "          float strokeMult;\n"                "          float strokeThr;\n"                "          int texType;\n"                "          int type;\n"                "  };\n"                "#else\n" // NANOVG_GL3 && !USE_UNIFORMBUFFER                "  uniform vec4 frag[UNIFORMARRAY_SIZE];\n"                "#endif\n"                "  uniform sampler2D tex;\n"                "  in vec2 ftcoord;\n"                "  in vec2 fpos;\n"                "  out vec4 outColor;\n"                "#else\n" // !NANOVG_GL3                "  uniform vec4 frag[UNIFORMARRAY_SIZE];\n"                "  uniform sampler2D tex;\n"                "  varying vec2 ftcoord;\n"                "  varying vec2 fpos;\n"                "#endif\n"                "#ifndef USE_UNIFORMBUFFER\n"                "  #define scissorMat mat3(frag[0].xyz, frag[1].xyz, frag[2].xyz)\n"                "  #define paintMat mat3(frag[3].xyz, frag[4].xyz, frag[5].xyz)\n"                "  #define innerCol frag[6]\n"                "  #define outerCol frag[7]\n"                "  #define scissorExt frag[8].xy\n"                "  #define scissorScale frag[8].zw\n"                "  #define extent frag[9].xy\n"                "  #define radius frag[9].z\n"                "  #define feather frag[9].w\n"                "  #define strokeMult frag[10].x\n"                "  #define strokeThr frag[10].y\n"                "  #define texType int(frag[10].z)\n"                "  #define type int(frag[10].w)\n"                "#endif\n"                "\n"                "float sdroundrect(vec2 pt, vec2 ext, float rad) {\n"                "  vec2 ext2 = ext - vec2(rad,rad);\n"                "  vec2 d = abs(pt) - ext2;\n"                "  return min(max(d.x,d.y),0.0) + length(max(d,0.0)) - rad;\n"                "}\n"                "\n"                "// Scissoring\n"                "float scissorMask(vec2 p) {\n"                "  vec2 sc = (abs((scissorMat * vec3(p,1.0)).xy) - scissorExt);\n"                "  sc = vec2(0.5,0.5) - sc * scissorScale;\n"                "  return clamp(sc.x,0.0,1.0) * clamp(sc.y,0.0,1.0);\n"                "}\n"                "#ifdef EDGE_AA\n"                "// Stroke - from [0..1] to clipped pyramid, where the slope is 1px.\n"                "float strokeMask() {\n"                "  return min(1.0, (1.0-abs(ftcoord.x*2.0-1.0))*strokeMult) * min(1.0, ftcoord.y);\n"                "}\n"                "#endif\n"                "\n"                "void main(void) {\n"                "   vec4 result;\n"                "  float scissor = scissorMask(fpos);\n"                "#ifdef EDGE_AA\n"                "  float strokeAlpha = strokeMask();\n"                "  if (strokeAlpha < strokeThr) discard;\n"                "#else\n"                "  float strokeAlpha = 1.0;\n"                "#endif\n"                "  if (type == 0) {                    // Gradient\n"                "          // Calculate gradient color using box gradient\n"                "          vec2 pt = (paintMat * vec3(fpos,1.0)).xy;\n"                "          float d = clamp((sdroundrect(pt, extent, radius) + feather*0.5) / feather, 0.0, 1.0);\n"                "          vec4 color = mix(innerCol,outerCol,d);\n"                "          // Combine alpha\n"                "          color *= strokeAlpha * scissor;\n"                "          result = color;\n"                "  } else if (type == 1) {           // Image\n"                "          // Calculate color fron texture\n"                "          vec2 pt = (paintMat * vec3(fpos,1.0)).xy / extent;\n"                "#ifdef NANOVG_GL3\n"                "          vec4 color = texture(tex, pt);\n"                "#else\n"                "          vec4 color = texture2D(tex, pt);\n"                "#endif\n"                "          if (texType == 1) color = vec4(color.xyz*color.w,color.w);"                "          if (texType == 2) color = vec4(color.x);"                "          // Apply color tint and alpha.\n"                "          color *= innerCol;\n"                "          // Combine alpha\n"                "          color *= strokeAlpha * scissor;\n"                "          result = color;\n"                "  } else if (type == 2) {           // Stencil fill\n"                "          result = vec4(1,1,1,1);\n"                "  } else if (type == 3) {           // Textured tris\n"                "#ifdef NANOVG_GL3\n"                "          vec4 color = texture(tex, ftcoord);\n"                "#else\n"                "          vec4 color = texture2D(tex, ftcoord);\n"                "#endif\n"                "          if (texType == 1) color = vec4(color.xyz*color.w,color.w);"                "          if (texType == 2) color = vec4(color.x);"                "          color *= scissor;\n"                "          result = color * innerCol;\n"                "  }\n"                "#ifdef NANOVG_GL3\n"                "  outColor = result;\n"                "#else\n"                "  gl_FragColor = result;\n"                "#endif\n"                "}\n";

它的功能很完整也很复杂,裁剪和反走样都做了处理。仔细分析之后,我发现了几个性能问题:

一、颜色填充的问题

简单颜色填充和渐变颜色填充使用了相同的代码:

             "  if (type == 0) {                    // Gradient\n"                "          // Calculate gradient color using box gradient\n"                "          vec2 pt = (paintMat * vec3(fpos,1.0)).xy;\n"                "          float d = clamp((sdroundrect(pt, extent, radius) + feather*0.5) / feather, 0.0, 1.0);\n"                "          vec4 color = mix(innerCol,outerCol,d);\n"                "          // Combine alpha\n"                "          color *= strokeAlpha * scissor;\n"                "          result = color;\n"
问题

简单颜色填充只需一条指令,而渐变颜色填充则需要数十条指令。这两种情况重用一段代码,会让简单颜色填充慢10倍以上。

方案

把颜色填充分成以下几种情况,分别进行优化:

  • 矩形简单颜色填充。

对于无需裁剪的矩形(这是最常见的情况),直接赋值即可,性能提高20倍以上。

      " if (type == 5) {    //fast fill color\n"      "   result = innerCol;\n"
  • 通用多边形简单颜色填充。

去掉渐变的采样函数,性能会提高一倍以上:

    " } else if(type == 7) {      // fill color\n"      "   strokeAlpha = strokeMask();\n"      "   if (strokeAlpha < strokeThr) discard;\n"      "   float scissor = scissorMask(fpos);\n"      "   vec4 color = innerCol;\n"      "   color *= strokeAlpha * scissor;\n"      "   result = color;\n"
  • 渐变颜色填充(只占极小的部分)。

这种情况非常少见,还是使用之前的代码。

效果:

平均情况,填充性能提高10倍以上!

二、字体的问题

对于文字而言,需要显示的像素和不显示的像素,平均算下来在1:1左右。

            "  } else if (type == 3) {           // Textured tris\n"                "#ifdef NANOVG_GL3\n"                "          vec4 color = texture(tex, ftcoord);\n"                "#else\n"                "          vec4 color = texture2D(tex, ftcoord);\n"                "#endif\n"                "          if (texType == 1) color = vec4(color.xyz*color.w,color.w);"                "          if (texType == 2) color = vec4(color.x);"                "          color *= scissor;\n"                "          result = color * innerCol;\n"                "  }\n"
问题:

如果显示的像素和不显示的像素都走完整的流程,会浪费调一半的时间。

方案:
  • 当color.x < 0.02时直接跳过。

  • 裁剪和反走样放到判断语句之后。

      " } else if (type == 3) {   // Textured tris\n"      "#ifdef NANOVG_GL3\n"      "   vec4 color = texture(tex, ftcoord);\n"      "#else\n"      "   vec4 color = texture2D(tex, ftcoord);\n"      "#endif\n"      "   if(color.x < 0.02) discard;\n"      "   strokeAlpha = strokeMask();\n"      "   if (strokeAlpha < strokeThr) discard;\n"      "   float scissor = scissorMask(fpos);\n"      "   color = vec4(color.x);"      "   color *= scissor;\n"      "   result = color * innerCol;\n"      " }\n"
效果:

字体渲染性能提高一倍!

三、反走样的问题

反走样的实现函数如下(其实我也不懂):

           "float strokeMask() {\n"                "  return min(1.0, (1.0-abs(ftcoord.x*2.0-1.0))*strokeMult) * min(1.0, ftcoord.y);\n"                "}\n"
问题:

与简单的赋值操作相比,加上反走样功能,性能会下降5-10倍。但是不加反走样功能,绘制多边形时边缘效果比较差。不加不好看,加了又太慢,看起来是个两难的选择。

方案:

矩形填充是可以不用反走样功能的。而90%以上的情况都是矩形填充。矩形填充单独处理,一条指令搞定,性能提高20倍以上:

      " if (type == 5) {    //fast fill color\n"      "   result = innerCol;\n"
效果:

配合裁剪和矩形的优化,性能提高10倍以上。

四、裁剪的问题

裁剪放到Shader中虽然合理,但是性能就要大大折扣了。

          "// Scissoring\n"                "float scissorMask(vec2 p) {\n"                "  vec2 sc = (abs((scissorMat * vec3(p,1.0)).xy) - scissorExt);\n"                "  sc = vec2(0.5,0.5) - sc * scissorScale;\n"                "  return clamp(sc.x,0.0,1.0) * clamp(sc.y,0.0,1.0);\n"                "}\n"
问题:

与简单的赋值操作相比,加上裁剪功能,性能会下降10以上倍。但是不加裁剪功能,像滚动视图这样的控件就没法实现,这看起来也是个两难的选择。

方案:

而90%以上的填充都是在裁剪区域的内部的,没有必要每个像素都去判断,放在Shader之外进行判断即可。

static int glnvg__pathInScissor(const NVGpath* path, NVGscissor* scissor) {  int32_t i = 0;  float cx = scissor->xform[4];  float cy = scissor->xform[5];  float hw = scissor->extent[0];  float hh = scissor->extent[1];  float l = cx - hw;  float t = cy - hh;  float r = l + 2 * hw - 1;  float b = t + 2 * hh - 1;  const NVGvertex* verts = path->fill;  for (i = 0; i < path->nfill; i++) {    const NVGvertex* iter = verts + i;    int x = iter->x;    int y = iter->y;    if (x < l || x > r || y < t || y > b) {      return 0;    }  }  return 1;}
效果:

配合裁剪和矩形的优化,性能提高10倍以上。

到此,相信大家对"NanoVG优化方法是什么"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

0