如何使用KafkaAPI-ProducerAPI
这篇文章主要讲解了"如何使用KafkaAPI-ProducerAPI",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"如何使用KafkaAPI-ProducerAPI"吧!
1.消息发送流程
Kafka 的 Producer 发送消息采用的是异步发送的方式。在消息发送的过程中,涉及到了两个线程--main 线程和 Sender 线程,以及一个线程共享变量--RecordAccumulator。main 线程将消息发送给 RecordAccumulator, Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka broker。
相关参数:
batch.size: 只有数据积累到 batch.size 之后, sender 才会发送数据。
linger.ms: 如果数据迟迟未达到 batch.size, sender 等待 linger.time 之后就会发送数据。
2.异步发送API
1)导入依赖
org.apache.kafka kafka-clients 2.7.0
2)编写代码
需要用到的类:
KafkaProducer:需要创建一个生产者对象,用来发送数据
ProducerConfig:获取所需的一系列配置参数
ProducerRecord:每条数据都要封装成一个 ProducerRecord 对象
2.1). 不带回调函数的API
import org.apache.kafka.clients.producer.KafkaProducer;import org.apache.kafka.clients.producer.ProducerConfig;import org.apache.kafka.clients.producer.ProducerRecord;import java.util.Properties;public class MyProducer { public static void main(String[] args) { //生产者配置信息可以从ProducerConfig中取Key //1.创建kafka生产者的配置信息 Properties properties=new Properties(); //2.指定连接的kafka集群 //properties.put("bootstrap.servers","192.168.1.106:9091"); properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.1.106:9091"); //3.ACK应答级别 //properties.put("acks","all"); properties.put(ProducerConfig.ACKS_CONFIG,"all"); //4.重试次数 //properties.put("retries",3); properties.put(ProducerConfig.RETRIES_CONFIG,3); //5.批次大小 16k //properties.put("batch.size",16384); properties.put(ProducerConfig.BATCH_SIZE_CONFIG,16384); //6.等待时间 //properties.put("linger.ms",1); properties.put(ProducerConfig.LINGER_MS_CONFIG,1); //7.RecordAccumulator 缓冲区大小 32M properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,33554432); //properties.put("buffer.memory",33554432); //8.Key,Value 的序列化类 //properties.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer"); properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); //properties.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer"); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); //9.创建生产者对象 KafkaProducerproducer = new KafkaProducer<>(properties); //10.发送数据 for (int i = 0; i < 10; i++) { ProducerRecord producerRecord = new ProducerRecord<>("first","atguigu--"+i); producer.send(producerRecord); } //11.关闭资源 producer.close(); }}
2.2) 带回调函数的API
回调函数会在 producer 收到 ack 时调用,为异步调用, 该方法有两个参数,分别是RecordMetadata 和 Exception,如果 Exception 为 null,说明消息发送成功,如果Exception 不为 null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。
import org.apache.kafka.clients.producer.*;import java.util.Properties;public class CallBackProducer { public static void main(String[] args) { //生产者配置信息可以从ProducerConfig中取Key Properties properties=new Properties(); properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.1.106:9091,192.168.1.106:9092,192.168.1.106:9093"); properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); //创建生产者对象 KafkaProducerproducer = new KafkaProducer<>(properties); /*创建topic /opt/kafka/kafka03/bin/kafka-topics.sh --create --zookeeper 192.168.1.106:2181,192.168.1.106:2182,192.168.1.106:2183 --replication-factor 3 --partitions 2 --topic aaa * */ //发送数据 for (int i = 0; i < 10; i++) { ProducerRecord producerRecord = new ProducerRecord<>("bbb","d","bbb-atguigu++"+i); producer.send(producerRecord, (recordMetadata, e) -> { if (e==null){ System.out.println("aaa "+recordMetadata.partition()+ "--"+recordMetadata.offset()); }else { e.printStackTrace(); } }); } //11.关闭资源 producer.close(); }}
3. 同步发送API
同步发送的意思就是,一条消息发送之后,会阻塞当前线程, 直至返回 ack。由于 send 方法返回的是一个 Future 对象,根据 Futrue 对象的特点,我们也可以实现同步发送的效果,只需在调用 Future 对象的 get 方发即可、
//10.发送数据 for (int i = 0; i < 10; i++) { ProducerRecordproducerRecord = new ProducerRecord<>("first","atguigu--"+i); producer.send(producerRecord).get(); }
4.自定义分区器
默认分区策略源码:
org.apache.kafka.clients.producer.internals.DefaultPartitioner
1.1. 自定义分区器代码:
import org.apache.kafka.clients.producer.Partitioner;import org.apache.kafka.common.Cluster;import org.apache.kafka.common.PartitionInfo;import java.util.List;import java.util.Map;public class MyPartitioner implements Partitioner { @Override public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { /*自定义分区规则*/ ListpartitionInfos = cluster.availablePartitionsForTopic(topic); Integer integer =partitionInfos.size(); return key.toString().hashCode()%integer; /*指定分区*/ /* return 1;*/ } @Override public void close() { } @Override public void configure(Map map) { }}
1.2. 生产者使用自定义分区器
//配置方法properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.zhl.kafkademo.partitioner.MyPartitioner");
完整代码:
import org.apache.kafka.clients.producer.KafkaProducer;import org.apache.kafka.clients.producer.ProducerConfig;import org.apache.kafka.clients.producer.ProducerRecord;import java.util.Properties;public class PartitionProducer { public static void main(String[] args) { //生产者配置信息可以从ProducerConfig中取Key Properties properties=new Properties(); properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.1.106:9091,192.168.1.106:9092,192.168.1.106:9093"); properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); //配置分区器的全类名 partitioner.class properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.zhl.kafkademo.partitioner.MyPartitioner"); //创建生产者对象 KafkaProducerproducer = new KafkaProducer<>(properties); //发送数据 for (int i = 0; i < 10; i++) { ProducerRecord producerRecord = new ProducerRecord<>("bbb","d","bbb-atguigu++"+i); producer.send(producerRecord, (recordMetadata, e) -> { if (e==null){ System.out.println(recordMetadata.topic()+"--"+ recordMetadata.partition()+ "--"+recordMetadata.offset()); }else { e.printStackTrace(); } }); } //11.关闭资源 producer.close(); }}
感谢各位的阅读,以上就是"如何使用KafkaAPI-ProducerAPI"的内容了,经过本文的学习后,相信大家对如何使用KafkaAPI-ProducerAPI这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!