千家信息网

大数据开发中itertools.chain()函数怎么用

发表于:2024-11-29 作者:千家信息网编辑
千家信息网最后更新 2024年11月29日,这篇文章主要介绍了大数据开发中itertools.chain()函数怎么用,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。你想在多个对象
千家信息网最后更新 2024年11月29日大数据开发中itertools.chain()函数怎么用

这篇文章主要介绍了大数据开发中itertools.chain()函数怎么用,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

你想在多个对象执行相同的操作,但是这些对象在不同的容器中,你希望代码在不失可读性的情况下避免写重复的循环

from itertools import chain a = [1, 2, 3, 4] b = ['x', 'y', 'z'] for x in chain(a, b):     print(x) 1 2 3 4 x y z

好处:如果采用a+b的方式遍历,那么要求a和b的类型一致,如果数据再大一点会,会消耗内存,而chain是通过创建迭代器,依次返回可迭代对象的元素

如何把一个 itertools.chain 对象转换为一个数组

list_of_numbers = [[1, 2], [3], []]import itertoolschain = itertools.chain(*list_of_numbers)

第一种比较简单,直接采用 list 方法,如下所示:

list(chain)

但缺点有两个:

  • 会在外层多嵌套一个列表

  • 效率并不高

第二个就是利用 numpy 库的方法 np.fromiter ,示例如下:

>>> import numpy as np>>> from itertools import chain>>> list_of_numbers = [[1, 2], [3], []]>>> np.fromiter(chain(*list_of_numbers), dtype=int)array([1, 2, 3])

对比两种方法的运算时间,如下所示:

>>> list_of_numbers = [[1, 2]*1000, [3]*1000, []]*1000>>> np.fromiter(chain(*list_of_numbers), dtype=int)10 loops, best of 3: 103 ms per loop>>> np.array(list(chain(*list_of_numbers)))1 loops, best of 3: 199 ms per loop

可以看到采用 numpy 方法的运算速度会更快。

感谢你能够认真阅读完这篇文章,希望小编分享的"大数据开发中itertools.chain()函数怎么用"这篇文章对大家有帮助,同时也希望大家多多支持,关注行业资讯频道,更多相关知识等着你来学习!

0