千家信息网

如何进行R语言用DNA序列做主成分的分析

发表于:2025-02-01 作者:千家信息网编辑
千家信息网最后更新 2025年02月01日,这篇文章将为大家详细讲解有关如何进行R语言用DNA序列做主成分的分析,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。之前也有人留言问过如何用DNA序列做
千家信息网最后更新 2025年02月01日如何进行R语言用DNA序列做主成分的分析

这篇文章将为大家详细讲解有关如何进行R语言用DNA序列做主成分的分析,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

之前也有人留言问过如何用DNA序列做主成分分析,当时我也不知道,但是大体有一个思路 就是先比对,然后把比对的数据转换成通常用的snp数据应该就可以了,但是也仅限于思路,完全不知道如何操作,今天坐车回家,路上无聊,翻了一下电脑上保存的一些资料,发现了一个办法:可以借助R语言的adegenet包,用到的函数是fasta2genlight()

fasta2genlight()函数的只要作用

The function fasta2genlight extracts SNPs from alignments with fasta format. 从比对好的fasta文件中提取snp数据

下面开始实际操作

adegenet这个包第一使用需要先安装,直接运行如下命令

install.packages("adegenet")

今天的推文使用的数据集是这个包的内置数据集,首先是获取这个数据集的存储路径

dfpath<-system.file("files/usflu.fasta",package="adegenet")
dfpath
加载包读入数据
library(adegenet)
flu<-fasta2genlight(dfpath,chunkSize = 10,parallel = F)
flu

数据读入以后做一些分析就比较容易了

首先是看一下snp位点在染色体上的分布密度
library(ggplot2)
snpposi.plot(position(flu),genome.size = 1700,codon = F)+
theme_bw()
image.png
还可以划分不同的密码子位置
snpposi.plot(position(flu),genome.size = 1700,codon = T)+
theme_bw()
image.png

这个图如果分面画成山脊图的形式可能会更好看,但是自己目前还不知道如何实现

还能够检测snp在染色体上是否分布均匀
snpposi.test(position(flu),genome.size = 1700)

这一步的时间可能会比较长

接下来是做主成分分析了
df.pca<-glPca(flu,nf=3)  
df.pca.scores<-as.data.frame(df.pca$scores)
df.pca.scores
自己随便构造一个分组信息,然后用散点图加置信椭圆的方式展示结果
df.pca.scores$population<-ifelse(df.pca.scores$PC1>0,"pop1",
ifelse(df.pca.scores$PC2>1,"pop2","pop3"))
library(ggplot2)
ggplot()+
geom_point(data=df.pca.scores,
size=2,
aes(x=PC1,y=PC2,
color=population))+
theme_bw()+
stat_ellipse(data=df.pca.scores,
aes(x=PC1,y=PC2,fill=population),
geom = "polygon",alpha=0.2,lty="dashed",color="black")
image.png

关于如何进行R语言用DNA序列做主成分的分析就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

0